final class MetaOptimizationTarget extends GeneratedMessageV3 with MetaOptimizationTargetOrBuilder
The high-level objectives described by this problem statement. These objectives provide a basis for ranking models and can be optimized by a meta optimizer (e.g. a grid search over hyperparameters). A solution provider may also directly use the meta optimization targets to heuristically select losses, etc without any meta-optimization process. If not specified, the high-level meta optimization target is inferred from the task. These objectives do not need to be differentiable, as the solution provider may use proxy function to optimize model weights. Target definitions include tasks, metrics, and any weighted combination of them.
Protobuf type tensorflow.metadata.v0.MetaOptimizationTarget
- Alphabetic
- By Inheritance
- MetaOptimizationTarget
- MetaOptimizationTargetOrBuilder
- GeneratedMessageV3
- Serializable
- AbstractMessage
- Message
- MessageOrBuilder
- AbstractMessageLite
- MessageLite
- MessageLiteOrBuilder
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(obj: AnyRef): Boolean
- Definition Classes
- MetaOptimizationTarget → AbstractMessage → Message → AnyRef → Any
- Annotations
- @Override()
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def findInitializationErrors(): List[String]
- Definition Classes
- AbstractMessage → MessageOrBuilder
- def getAllFields(): Map[FieldDescriptor, AnyRef]
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getDefaultInstanceForType(): MetaOptimizationTarget
- Definition Classes
- MetaOptimizationTarget → MessageOrBuilder → MessageLiteOrBuilder
- Annotations
- @Override()
- def getDescriptorForType(): Descriptor
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getField(field: FieldDescriptor): AnyRef
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getInitializationErrorString(): String
- Definition Classes
- AbstractMessage → MessageOrBuilder
- def getObjectiveCombinationCase(): ObjectiveCombinationCase
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- def getOneofFieldDescriptor(oneof: OneofDescriptor): FieldDescriptor
- Definition Classes
- GeneratedMessageV3 → AbstractMessage → MessageOrBuilder
- def getParserForType(): Parser[MetaOptimizationTarget]
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3 → Message → MessageLite
- Annotations
- @Override()
- def getPerformanceMetric(): PerformanceMetric
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
.tensorflow.metadata.v0.PerformanceMetric performance_metric = 3;
- returns
The performanceMetric.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getPerformanceMetricOrBuilder(): PerformanceMetricOrBuilder
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
.tensorflow.metadata.v0.PerformanceMetric performance_metric = 3;
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getRepeatedField(field: FieldDescriptor, index: Int): AnyRef
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getRepeatedFieldCount(field: FieldDescriptor): Int
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getSerializedSize(): Int
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3 → AbstractMessage → MessageLite
- Annotations
- @Override()
- def getTaskName(): String
The name of a task in this problem statement producing the prediction or classification for the metric.
The name of a task in this problem statement producing the prediction or classification for the metric.
string task_name = 1;
- returns
The taskName.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getTaskNameBytes(): ByteString
The name of a task in this problem statement producing the prediction or classification for the metric.
The name of a task in this problem statement producing the prediction or classification for the metric.
string task_name = 1;
- returns
The bytes for taskName.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getThresholdConfig(): ThresholdConfig
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
.tensorflow.metadata.v0.MetaOptimizationTarget.ThresholdConfig threshold_config = 5;
- returns
The thresholdConfig.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getThresholdConfigOrBuilder(): ThresholdConfigOrBuilder
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
.tensorflow.metadata.v0.MetaOptimizationTarget.ThresholdConfig threshold_config = 5;
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def getUnknownFields(): UnknownFieldSet
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def hasField(field: FieldDescriptor): Boolean
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def hasOneof(oneof: OneofDescriptor): Boolean
- Definition Classes
- GeneratedMessageV3 → AbstractMessage → MessageOrBuilder
- def hasPerformanceMetric(): Boolean
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
The performance metric to be evaluated. The prediction or classification is based upon the task. The label is from the type of the task, or from the override_task.
.tensorflow.metadata.v0.PerformanceMetric performance_metric = 3;
- returns
Whether the performanceMetric field is set.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def hasThresholdConfig(): Boolean
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
Secondary meta optimization targets can be thresholded, meaning that the optimization process prefers solutions above (or below) the threshold, but need not prefer solutions higher (or lower) on the metric if the threshold is met.
.tensorflow.metadata.v0.MetaOptimizationTarget.ThresholdConfig threshold_config = 5;
- returns
Whether the thresholdConfig field is set.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override()
- def hashCode(): Int
- Definition Classes
- MetaOptimizationTarget → AbstractMessage → Message → AnyRef → Any
- Annotations
- @Override()
- def internalGetFieldAccessorTable(): FieldAccessorTable
- Attributes
- protected[v0]
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3
- Annotations
- @Override()
- def internalGetMapFieldReflection(fieldNumber: Int): MapFieldReflectionAccessor
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- final def isInitialized(): Boolean
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3 → AbstractMessage → MessageLiteOrBuilder
- Annotations
- @Override()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def makeExtensionsImmutable(): Unit
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def newBuilderForType(parent: BuilderParent): Builder
- Attributes
- protected[v0]
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3
- Annotations
- @Override()
- def newBuilderForType(): Builder
- Definition Classes
- MetaOptimizationTarget → Message → MessageLite
- Annotations
- @Override()
- def newBuilderForType(parent: BuilderParent): Builder
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3 → AbstractMessage
- def newInstance(unused: UnusedPrivateParameter): AnyRef
- Attributes
- protected[v0]
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3
- Annotations
- @Override() @SuppressWarnings()
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def parseUnknownField(input: CodedInputStream, unknownFields: Builder, extensionRegistry: ExtensionRegistryLite, tag: Int): Boolean
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- Annotations
- @throws(classOf[java.io.IOException])
- def parseUnknownFieldProto3(input: CodedInputStream, unknownFields: Builder, extensionRegistry: ExtensionRegistryLite, tag: Int): Boolean
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- Annotations
- @throws(classOf[java.io.IOException])
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toBuilder(): Builder
- Definition Classes
- MetaOptimizationTarget → Message → MessageLite
- Annotations
- @Override()
- def toByteArray(): Array[Byte]
- Definition Classes
- AbstractMessageLite → MessageLite
- def toByteString(): ByteString
- Definition Classes
- AbstractMessageLite → MessageLite
- final def toString(): String
- Definition Classes
- AbstractMessage → Message → AnyRef → Any
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def writeDelimitedTo(output: OutputStream): Unit
- Definition Classes
- AbstractMessageLite → MessageLite
- Annotations
- @throws(classOf[java.io.IOException])
- def writeReplace(): AnyRef
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- Annotations
- @throws(classOf[java.io.ObjectStreamException])
- def writeTo(output: CodedOutputStream): Unit
- Definition Classes
- MetaOptimizationTarget → GeneratedMessageV3 → AbstractMessage → MessageLite
- Annotations
- @Override()
- def writeTo(output: OutputStream): Unit
- Definition Classes
- AbstractMessageLite → MessageLite
- Annotations
- @throws(classOf[java.io.IOException])
Deprecated Value Members
- def getWeight(): Double
If a model spec has multiple meta optimization targets, the weight of each can be specified. The final objective is then a weighted combination of the multiple objectives. If not specified, value is 1.
If a model spec has multiple meta optimization targets, the weight of each can be specified. The final objective is then a weighted combination of the multiple objectives. If not specified, value is 1.
double weight = 4 [deprecated = true];
- returns
The weight.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override() @Deprecated
- Deprecated
- def hasWeight(): Boolean
If a model spec has multiple meta optimization targets, the weight of each can be specified. The final objective is then a weighted combination of the multiple objectives. If not specified, value is 1.
If a model spec has multiple meta optimization targets, the weight of each can be specified. The final objective is then a weighted combination of the multiple objectives. If not specified, value is 1.
double weight = 4 [deprecated = true];
- returns
Whether the weight field is set.
- Definition Classes
- MetaOptimizationTarget → MetaOptimizationTargetOrBuilder
- Annotations
- @Override() @Deprecated
- Deprecated
- def internalGetMapField(fieldNumber: Int): MapField[_ <: AnyRef, _ <: AnyRef]
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- Annotations
- @Deprecated
- Deprecated
- def mergeFromAndMakeImmutableInternal(input: CodedInputStream, extensionRegistry: ExtensionRegistryLite): Unit
- Attributes
- protected[protobuf]
- Definition Classes
- GeneratedMessageV3
- Annotations
- @throws(classOf[com.google.protobuf.InvalidProtocolBufferException]) @Deprecated
- Deprecated