Packages

package v0

Type Members

  1. final class AUC extends GeneratedMessageV3 with AUCOrBuilder

    Area under curve for the ROC-curve.
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
    

    Area under curve for the ROC-curve.
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
    

    Protobuf type tensorflow.metadata.v0.AUC

  2. trait AUCOrBuilder extends MessageOrBuilder
  3. final class AUCPrecisionRecall extends GeneratedMessageV3 with AUCPrecisionRecallOrBuilder

    Area under curve for the precision-recall-curve.
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
    

    Area under curve for the precision-recall-curve.
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
    

    Protobuf type tensorflow.metadata.v0.AUCPrecisionRecall

  4. trait AUCPrecisionRecallOrBuilder extends MessageOrBuilder
  5. final class AllowlistDeriver extends GeneratedMessageV3 with AllowlistDeriverOrBuilder

    Protobuf type tensorflow.metadata.v0.AllowlistDeriver

  6. trait AllowlistDeriverOrBuilder extends MessageOrBuilder
  7. final class Annotation extends GeneratedMessageV3 with AnnotationOrBuilder

    Additional information about the schema or about a feature.
    

    Additional information about the schema or about a feature.
    

    Protobuf type tensorflow.metadata.v0.Annotation

  8. trait AnnotationOrBuilder extends MessageOrBuilder
  9. final class Anomalies extends GeneratedMessageV3 with AnomaliesOrBuilder

    Message to represent the anomalies, which describe the mismatches (if any)
    between the stats and the schema.
    

    Message to represent the anomalies, which describe the mismatches (if any)
    between the stats and the schema.
    

    Protobuf type tensorflow.metadata.v0.Anomalies

  10. trait AnomaliesOrBuilder extends MessageOrBuilder
  11. final class AnomaliesOuterClass extends AnyRef
  12. final class AnomalyInfo extends GeneratedMessageV3 with AnomalyInfoOrBuilder

    Message to represent information about an individual anomaly.
    

    Message to represent information about an individual anomaly.
    

    Protobuf type tensorflow.metadata.v0.AnomalyInfo

  13. trait AnomalyInfoOrBuilder extends MessageOrBuilder
  14. final class ArgmaxTopK extends GeneratedMessageV3 with ArgmaxTopKOrBuilder

    Protobuf type tensorflow.metadata.v0.ArgmaxTopK

  15. trait ArgmaxTopKOrBuilder extends MessageOrBuilder
  16. final class BinaryAccuracy extends GeneratedMessageV3 with BinaryAccuracyOrBuilder

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_accuracy
    

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_accuracy
    

    Protobuf type tensorflow.metadata.v0.BinaryAccuracy

  17. trait BinaryAccuracyOrBuilder extends MessageOrBuilder
  18. final class BinaryClassification extends GeneratedMessageV3 with BinaryClassificationOrBuilder

    Configuration for a binary classification task.
    The output is one of two possible class labels, encoded as the same type
    as the label column.
    BinaryClassification is the same as MultiClassClassification with
    n_classes = 2.
    

    Configuration for a binary classification task.
    The output is one of two possible class labels, encoded as the same type
    as the label column.
    BinaryClassification is the same as MultiClassClassification with
    n_classes = 2.
    

    Protobuf type tensorflow.metadata.v0.BinaryClassification

  19. trait BinaryClassificationOrBuilder extends MessageOrBuilder
  20. final class BinaryCrossEntropy extends GeneratedMessageV3 with BinaryCrossEntropyOrBuilder

    Binary cross entropy as a metric is equal to the negative log likelihood
    (see logistic regression).
    In addition, when used to solve a binary classification task, binary cross
    entropy implies that the binary label will maximize binary accuracy.
    binary_crossentropy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_crossentropy
    

    Binary cross entropy as a metric is equal to the negative log likelihood
    (see logistic regression).
    In addition, when used to solve a binary classification task, binary cross
    entropy implies that the binary label will maximize binary accuracy.
    binary_crossentropy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_crossentropy
    

    Protobuf type tensorflow.metadata.v0.BinaryCrossEntropy

  21. trait BinaryCrossEntropyOrBuilder extends MessageOrBuilder
  22. final class BlockUtility extends GeneratedMessageV3 with BlockUtilityOrBuilder

    DEPRECATED
    

    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.BlockUtility

  23. trait BlockUtilityOrBuilder extends MessageOrBuilder
  24. final class BoolDomain extends GeneratedMessageV3 with BoolDomainOrBuilder

    Encodes information about the domain of a boolean attribute that encodes its
    TRUE/FALSE values as strings, or 0=false, 1=true.
    Note that FeatureType could be either INT or BYTES.
    

    Encodes information about the domain of a boolean attribute that encodes its
    TRUE/FALSE values as strings, or 0=false, 1=true.
    Note that FeatureType could be either INT or BYTES.
    

    Protobuf type tensorflow.metadata.v0.BoolDomain

  25. trait BoolDomainOrBuilder extends MessageOrBuilder
  26. final class BytesStatistics extends GeneratedMessageV3 with BytesStatisticsOrBuilder

    Statistics for a bytes feature in a dataset.
    

    Statistics for a bytes feature in a dataset.
    

    Protobuf type tensorflow.metadata.v0.BytesStatistics

  27. trait BytesStatisticsOrBuilder extends MessageOrBuilder
  28. final class CategoricalAccuracy extends GeneratedMessageV3 with CategoricalAccuracyOrBuilder

    categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_accuracy
    

    categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_accuracy
    

    Protobuf type tensorflow.metadata.v0.CategoricalAccuracy

  29. trait CategoricalAccuracyOrBuilder extends MessageOrBuilder
  30. final class CategoricalCrossEntropy extends GeneratedMessageV3 with CategoricalCrossEntropyOrBuilder

    categorical_crossentropy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_crossentropy
    

    categorical_crossentropy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_crossentropy
    

    Protobuf type tensorflow.metadata.v0.CategoricalCrossEntropy

  31. trait CategoricalCrossEntropyOrBuilder extends MessageOrBuilder
  32. final class CategoricalCrossStatistics extends GeneratedMessageV3 with CategoricalCrossStatisticsOrBuilder

    Protobuf type tensorflow.metadata.v0.CategoricalCrossStatistics

  33. trait CategoricalCrossStatisticsOrBuilder extends MessageOrBuilder
  34. final class ChangedRegion extends GeneratedMessageV3 with ChangedRegionOrBuilder

    Describes a chunk that represents changes in both artifacts over the same
    number of lines.
    

    Describes a chunk that represents changes in both artifacts over the same
    number of lines.
    

    Protobuf type tensorflow.metadata.v0.ChangedRegion

  35. trait ChangedRegionOrBuilder extends MessageOrBuilder
  36. final class CommonStatistics extends GeneratedMessageV3 with CommonStatisticsOrBuilder

    Common statistics for all feature types. Statistics counting number of values
    (i.e., min_num_values, max_num_values, avg_num_values, and tot_num_values)
    include NaNs.
    

    Common statistics for all feature types. Statistics counting number of values
    (i.e., min_num_values, max_num_values, avg_num_values, and tot_num_values)
    include NaNs.
    

    Protobuf type tensorflow.metadata.v0.CommonStatistics

  37. trait CommonStatisticsOrBuilder extends MessageOrBuilder
  38. final class Cosine extends GeneratedMessageV3 with CosineOrBuilder

    cosine(...)
    cosine_proximity(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/cosine_proximity
    DEPRECATED
    

    cosine(...)
    cosine_proximity(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/cosine_proximity
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.Cosine

  39. trait CosineOrBuilder extends MessageOrBuilder
  40. final class CrossFeatureStatistics extends GeneratedMessageV3 with CrossFeatureStatisticsOrBuilder

    NextID: 8
    

    NextID: 8
    

    Protobuf type tensorflow.metadata.v0.CrossFeatureStatistics

  41. trait CrossFeatureStatisticsOrBuilder extends MessageOrBuilder
  42. final class CustomMetric extends GeneratedMessageV3 with CustomMetricOrBuilder

    A custom metric.
    Prefer using or adding an explicit metric message
    and only use this generic message as a last resort.
    NEXT_TAG: 4
    

    A custom metric.
    Prefer using or adding an explicit metric message
    and only use this generic message as a last resort.
    NEXT_TAG: 4
    

    Protobuf type tensorflow.metadata.v0.CustomMetric

  43. trait CustomMetricOrBuilder extends MessageOrBuilder
  44. final class CustomStatistic extends GeneratedMessageV3 with CustomStatisticOrBuilder

    Stores the name and value of any custom statistic. The value can be a string,
    double, or histogram.
    

    Stores the name and value of any custom statistic. The value can be a string,
    double, or histogram.
    

    Protobuf type tensorflow.metadata.v0.CustomStatistic

  45. trait CustomStatisticOrBuilder extends MessageOrBuilder
  46. final class DatasetConstraints extends GeneratedMessageV3 with DatasetConstraintsOrBuilder

    Constraints on the entire dataset.
    

    Constraints on the entire dataset.
    

    Protobuf type tensorflow.metadata.v0.DatasetConstraints

  47. trait DatasetConstraintsOrBuilder extends MessageOrBuilder
  48. final class DatasetFeatureStatistics extends GeneratedMessageV3 with DatasetFeatureStatisticsOrBuilder

    The feature statistics for a single dataset.
    

    The feature statistics for a single dataset.
    

    Protobuf type tensorflow.metadata.v0.DatasetFeatureStatistics

  49. final class DatasetFeatureStatisticsList extends GeneratedMessageV3 with DatasetFeatureStatisticsListOrBuilder

    A list of features statistics for different datasets. If you wish to compare
    different datasets using this list, then the DatasetFeatureStatistics
    entries should all contain the same list of features.
    LINT.IfChange
    

    A list of features statistics for different datasets. If you wish to compare
    different datasets using this list, then the DatasetFeatureStatistics
    entries should all contain the same list of features.
    LINT.IfChange
    

    Protobuf type tensorflow.metadata.v0.DatasetFeatureStatisticsList

  50. trait DatasetFeatureStatisticsListOrBuilder extends MessageOrBuilder
  51. trait DatasetFeatureStatisticsOrBuilder extends MessageOrBuilder
  52. final class DerivedFeature extends AnyRef
  53. final class DerivedFeatureConfig extends GeneratedMessageV3 with DerivedFeatureConfigOrBuilder

    Stores configuration for a variety of canned feature derivers.
    TODO(b/227478330): Consider validating config in merge_util.cc.
    

    Stores configuration for a variety of canned feature derivers.
    TODO(b/227478330): Consider validating config in merge_util.cc.
    

    Protobuf type tensorflow.metadata.v0.DerivedFeatureConfig

  54. trait DerivedFeatureConfigOrBuilder extends MessageOrBuilder
  55. final class DerivedFeatureSource extends GeneratedMessageV3 with DerivedFeatureSourceOrBuilder

    DerivedFeatureSource tracks information about the source of a derived
    feature. Derived features are computed from ordinary features for the
    purposes of statistics collection and validation, but do not exist in the
    dataset.
    Experimental and subject to change.
    LINT.IfChange
    

    DerivedFeatureSource tracks information about the source of a derived
    feature. Derived features are computed from ordinary features for the
    purposes of statistics collection and validation, but do not exist in the
    dataset.
    Experimental and subject to change.
    LINT.IfChange
    

    Protobuf type tensorflow.metadata.v0.DerivedFeatureSource

  56. trait DerivedFeatureSourceOrBuilder extends MessageOrBuilder
  57. final class DiffRegion extends GeneratedMessageV3 with DiffRegionOrBuilder

    Describes a region in the comparison between two text artifacts. Note that
    a region also contains the contents of the two artifacts that correspond to
    the region.
    

    Describes a region in the comparison between two text artifacts. Note that
    a region also contains the contents of the two artifacts that correspond to
    the region.
    

    Protobuf type tensorflow.metadata.v0.DiffRegion

  58. trait DiffRegionOrBuilder extends MessageOrBuilder
  59. final class DistributionConstraints extends GeneratedMessageV3 with DistributionConstraintsOrBuilder

    Models constraints on the distribution of a feature's values.
    TODO(martinz): replace min_domain_mass with max_off_domain (but slowly).
    

    Models constraints on the distribution of a feature's values.
    TODO(martinz): replace min_domain_mass with max_off_domain (but slowly).
    

    Protobuf type tensorflow.metadata.v0.DistributionConstraints

  60. trait DistributionConstraintsOrBuilder extends MessageOrBuilder
  61. final class DriftSkewInfo extends GeneratedMessageV3 with DriftSkewInfoOrBuilder

    Message to contain the result of the drift/skew measurements for a feature.
    

    Message to contain the result of the drift/skew measurements for a feature.
    

    Protobuf type tensorflow.metadata.v0.DriftSkewInfo

  62. trait DriftSkewInfoOrBuilder extends MessageOrBuilder
  63. final class DynamicClassSpec extends GeneratedMessageV3 with DynamicClassSpecOrBuilder

    Specifies a dynamic multiclass/multi-label problem where the number of label
     classes is inferred from the data.
    

    Specifies a dynamic multiclass/multi-label problem where the number of label
     classes is inferred from the data.
    

    Protobuf type tensorflow.metadata.v0.DynamicClassSpec

  64. trait DynamicClassSpecOrBuilder extends MessageOrBuilder
  65. final class FalseNegativeRateAtThreshold extends GeneratedMessageV3 with FalseNegativeRateAtThresholdOrBuilder

    Protobuf type tensorflow.metadata.v0.FalseNegativeRateAtThreshold

  66. trait FalseNegativeRateAtThresholdOrBuilder extends MessageOrBuilder
  67. final class FalsePositiveRateAtThreshold extends GeneratedMessageV3 with FalsePositiveRateAtThresholdOrBuilder

    Protobuf type tensorflow.metadata.v0.FalsePositiveRateAtThreshold

  68. trait FalsePositiveRateAtThresholdOrBuilder extends MessageOrBuilder
  69. final class Feature extends GeneratedMessageV3 with FeatureOrBuilder

    Describes schema-level information about a specific feature.
    NextID: 36
    

    Describes schema-level information about a specific feature.
    NextID: 36
    

    Protobuf type tensorflow.metadata.v0.Feature

  70. final class FeatureComparator extends GeneratedMessageV3 with FeatureComparatorOrBuilder

    Protobuf type tensorflow.metadata.v0.FeatureComparator

  71. trait FeatureComparatorOrBuilder extends MessageOrBuilder
  72. final class FeatureCoverageConstraints extends GeneratedMessageV3 with FeatureCoverageConstraintsOrBuilder

    Encodes vocabulary coverage constraints.
    

    Encodes vocabulary coverage constraints.
    

    Protobuf type tensorflow.metadata.v0.FeatureCoverageConstraints

  73. trait FeatureCoverageConstraintsOrBuilder extends MessageOrBuilder
  74. final class FeatureNameStatistics extends GeneratedMessageV3 with FeatureNameStatisticsOrBuilder

    The complete set of statistics for a given feature name for a dataset.
    NextID: 11
    

    The complete set of statistics for a given feature name for a dataset.
    NextID: 11
    

    Protobuf type tensorflow.metadata.v0.FeatureNameStatistics

  75. trait FeatureNameStatisticsOrBuilder extends MessageOrBuilder
  76. trait FeatureOrBuilder extends MessageOrBuilder
  77. final class FeaturePresence extends GeneratedMessageV3 with FeaturePresenceOrBuilder

    Describes constraints on the presence of the feature in the data.
    

    Describes constraints on the presence of the feature in the data.
    

    Protobuf type tensorflow.metadata.v0.FeaturePresence

  78. trait FeaturePresenceOrBuilder extends MessageOrBuilder
  79. final class FeaturePresenceWithinGroup extends GeneratedMessageV3 with FeaturePresenceWithinGroupOrBuilder

    Records constraints on the presence of a feature inside a "group" context
    (e.g., .presence inside a group of features that define a sequence).
    

    Records constraints on the presence of a feature inside a "group" context
    (e.g., .presence inside a group of features that define a sequence).
    

    Protobuf type tensorflow.metadata.v0.FeaturePresenceWithinGroup

  80. trait FeaturePresenceWithinGroupOrBuilder extends MessageOrBuilder
  81. sealed final class FeatureType extends Enum[FeatureType] with ProtocolMessageEnum

    Describes the physical representation of a feature.
    It may be different than the logical representation, which
    is represented as a Domain.
    

    Describes the physical representation of a feature.
    It may be different than the logical representation, which
    is represented as a Domain.
    

    Protobuf enum tensorflow.metadata.v0.FeatureType

  82. final class FixedShape extends GeneratedMessageV3 with FixedShapeOrBuilder

    Specifies a fixed shape for the feature's values. The immediate implication
    is that each feature has a fixed number of values. Moreover, these values
    can be parsed in a multi-dimensional tensor using the specified axis sizes.
    The FixedShape defines a lexicographical ordering of the data. For instance,
    if there is a FixedShape {
      dim {size:3} dim {size:2}
    }
    then tensor[0][0]=field[0]
    then tensor[0][1]=field[1]
    then tensor[1][0]=field[2]
    then tensor[1][1]=field[3]
    then tensor[2][0]=field[4]
    then tensor[2][1]=field[5]
    
    The FixedShape message is identical with the TensorFlow TensorShape proto
    message.
    

    Specifies a fixed shape for the feature's values. The immediate implication
    is that each feature has a fixed number of values. Moreover, these values
    can be parsed in a multi-dimensional tensor using the specified axis sizes.
    The FixedShape defines a lexicographical ordering of the data. For instance,
    if there is a FixedShape {
      dim {size:3} dim {size:2}
    }
    then tensor[0][0]=field[0]
    then tensor[0][1]=field[1]
    then tensor[1][0]=field[2]
    then tensor[1][1]=field[3]
    then tensor[2][0]=field[4]
    then tensor[2][1]=field[5]
    
    The FixedShape message is identical with the TensorFlow TensorShape proto
    message.
    

    Protobuf type tensorflow.metadata.v0.FixedShape

  83. trait FixedShapeOrBuilder extends MessageOrBuilder
  84. final class FloatDomain extends GeneratedMessageV3 with FloatDomainOrBuilder

    Encodes information for domains of float values.
    Note that FeatureType could be either INT or BYTES.
    

    Encodes information for domains of float values.
    Note that FeatureType could be either INT or BYTES.
    

    Protobuf type tensorflow.metadata.v0.FloatDomain

  85. trait FloatDomainOrBuilder extends MessageOrBuilder
  86. final class HiddenRegion extends GeneratedMessageV3 with HiddenRegionOrBuilder

    A chunk that represents identical lines, whose contents are hidden.
    

    A chunk that represents identical lines, whose contents are hidden.
    

    Protobuf type tensorflow.metadata.v0.HiddenRegion

  87. trait HiddenRegionOrBuilder extends MessageOrBuilder
  88. final class Hinge extends GeneratedMessageV3 with HingeOrBuilder

    Linear Hinge Loss
    hinge(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge
    DEPRECATED
    

    Linear Hinge Loss
    hinge(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.Hinge

  89. trait HingeOrBuilder extends MessageOrBuilder
  90. final class Histogram extends GeneratedMessageV3 with HistogramOrBuilder

    The data used to create a histogram of a numeric feature for a dataset.
    

    The data used to create a histogram of a numeric feature for a dataset.
    

    Protobuf type tensorflow.metadata.v0.Histogram

  91. trait HistogramOrBuilder extends MessageOrBuilder
  92. final class HistogramSelection extends GeneratedMessageV3 with HistogramSelectionOrBuilder

    Protobuf type tensorflow.metadata.v0.HistogramSelection

  93. trait HistogramSelectionOrBuilder extends MessageOrBuilder
  94. final class ImageDomain extends GeneratedMessageV3 with ImageDomainOrBuilder

    Image data.
    

    Image data.
    

    Protobuf type tensorflow.metadata.v0.ImageDomain

  95. trait ImageDomainOrBuilder extends MessageOrBuilder
  96. final class ImageQualityDeriver extends GeneratedMessageV3 with ImageQualityDeriverOrBuilder

    Protobuf type tensorflow.metadata.v0.ImageQualityDeriver

  97. trait ImageQualityDeriverOrBuilder extends MessageOrBuilder
  98. final class InfinityNorm extends GeneratedMessageV3 with InfinityNormOrBuilder

    Checks that the L-infinity norm is below a certain threshold between the
    two discrete distributions. Since this is applied to a FeatureNameStatistics,
    it only considers the top k.
    L_infty(p,q) = max_i |p_i-q_i|
    

    Checks that the L-infinity norm is below a certain threshold between the
    two discrete distributions. Since this is applied to a FeatureNameStatistics,
    it only considers the top k.
    L_infty(p,q) = max_i |p_i-q_i|
    

    Protobuf type tensorflow.metadata.v0.InfinityNorm

  99. trait InfinityNormOrBuilder extends MessageOrBuilder
  100. final class IntDomain extends GeneratedMessageV3 with IntDomainOrBuilder

    Encodes information for domains of integer values.
    Note that FeatureType could be either INT or BYTES.
    

    Encodes information for domains of integer values.
    Note that FeatureType could be either INT or BYTES.
    

    Protobuf type tensorflow.metadata.v0.IntDomain

  101. trait IntDomainOrBuilder extends MessageOrBuilder
  102. final class JensenShannonDivergence extends GeneratedMessageV3 with JensenShannonDivergenceOrBuilder

    Checks that the approximate Jensen-Shannon Divergence is below a certain
    threshold between the two distributions.
    

    Checks that the approximate Jensen-Shannon Divergence is below a certain
    threshold between the two distributions.
    

    Protobuf type tensorflow.metadata.v0.JensenShannonDivergence

  103. trait JensenShannonDivergenceOrBuilder extends MessageOrBuilder
  104. final class KullbackLeiblerDivergence extends GeneratedMessageV3 with KullbackLeiblerDivergenceOrBuilder

    kld(...)
    kullback_leibler_divergence(...)
    KLD(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/kullback_leibler_divergence
    DEPRECATED
    

    kld(...)
    kullback_leibler_divergence(...)
    KLD(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/kullback_leibler_divergence
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.KullbackLeiblerDivergence

  105. trait KullbackLeiblerDivergenceOrBuilder extends MessageOrBuilder
  106. sealed final class LifecycleStage extends Enum[LifecycleStage] with ProtocolMessageEnum

    LifecycleStage. Only UNKNOWN_STAGE, BETA, PRODUCTION, and VALIDATION_DERIVED
    features are actually validated.
    PLANNED, ALPHA, DISABLED, and DEBUG are treated as DEPRECATED.
    

    LifecycleStage. Only UNKNOWN_STAGE, BETA, PRODUCTION, and VALIDATION_DERIVED
    features are actually validated.
    PLANNED, ALPHA, DISABLED, and DEBUG are treated as DEPRECATED.
    

    Protobuf enum tensorflow.metadata.v0.LifecycleStage

  107. final class LiftSeries extends GeneratedMessageV3 with LiftSeriesOrBuilder

    Container for lift information for a specific y-value.
    

    Container for lift information for a specific y-value.
    

    Protobuf type tensorflow.metadata.v0.LiftSeries

  108. trait LiftSeriesOrBuilder extends MessageOrBuilder
  109. final class LiftStatistics extends GeneratedMessageV3 with LiftStatisticsOrBuilder

    Protobuf type tensorflow.metadata.v0.LiftStatistics

  110. trait LiftStatisticsOrBuilder extends MessageOrBuilder
  111. final class LogisticRegression extends GeneratedMessageV3 with LogisticRegressionOrBuilder

    AKA the negative log likelihood or log loss.
    Given a label y\in {0,1} and a predicted probability p in [0,1]:
    -yln(p)-(1-y)ln(1-p)
    TODO(martinz): if this is interpreted the same as binary_cross_entropy,
    we may need to revisit the semantics.
    DEPRECATED
    

    AKA the negative log likelihood or log loss.
    Given a label y\in {0,1} and a predicted probability p in [0,1]:
    -yln(p)-(1-y)ln(1-p)
    TODO(martinz): if this is interpreted the same as binary_cross_entropy,
    we may need to revisit the semantics.
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.LogisticRegression

  112. trait LogisticRegressionOrBuilder extends MessageOrBuilder
  113. final class MIDDomain extends GeneratedMessageV3 with MIDDomainOrBuilder

    Knowledge graph ID, see: https://www.wikidata.org/wiki/Property:P646
    

    Knowledge graph ID, see: https://www.wikidata.org/wiki/Property:P646
    

    Protobuf type tensorflow.metadata.v0.MIDDomain

  114. trait MIDDomainOrBuilder extends MessageOrBuilder
  115. final class MaximumMeanDiscrepancy extends GeneratedMessageV3 with MaximumMeanDiscrepancyOrBuilder

    https://www.tensorflow.org/responsible_ai/model_remediation/api_docs/python/model_remediation/min_diff/losses/MMDLoss
    

    https://www.tensorflow.org/responsible_ai/model_remediation/api_docs/python/model_remediation/min_diff/losses/MMDLoss
    

    Protobuf type tensorflow.metadata.v0.MaximumMeanDiscrepancy

  116. trait MaximumMeanDiscrepancyOrBuilder extends MessageOrBuilder
  117. final class MeanAbsoluteError extends GeneratedMessageV3 with MeanAbsoluteErrorOrBuilder

    MAE(...)
    mae(...)
    mean_absolute_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_error
    

    MAE(...)
    mae(...)
    mean_absolute_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_error
    

    Protobuf type tensorflow.metadata.v0.MeanAbsoluteError

  118. trait MeanAbsoluteErrorOrBuilder extends MessageOrBuilder
  119. final class MeanAbsolutePercentageError extends GeneratedMessageV3 with MeanAbsolutePercentageErrorOrBuilder

    MAPE(...)
    mape(...)
    mean_absolute_percentage_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_percentage_error
    

    MAPE(...)
    mape(...)
    mean_absolute_percentage_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_percentage_error
    

    Protobuf type tensorflow.metadata.v0.MeanAbsolutePercentageError

  120. trait MeanAbsolutePercentageErrorOrBuilder extends MessageOrBuilder
  121. final class MeanReciprocalRank extends GeneratedMessageV3 with MeanReciprocalRankOrBuilder

    Protobuf type tensorflow.metadata.v0.MeanReciprocalRank

  122. trait MeanReciprocalRankOrBuilder extends MessageOrBuilder
  123. final class MeanSquaredError extends GeneratedMessageV3 with MeanSquaredErrorOrBuilder

    MSE(...)
    mse(...)
    mean_squared_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_error
    

    MSE(...)
    mse(...)
    mean_squared_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_error
    

    Protobuf type tensorflow.metadata.v0.MeanSquaredError

  124. trait MeanSquaredErrorOrBuilder extends MessageOrBuilder
  125. final class MeanSquaredLogarithmicError extends GeneratedMessageV3 with MeanSquaredLogarithmicErrorOrBuilder

    msle(...)
    MSLE(...)
    mean_squared_logarithmic_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_logarithmic_error
    

    msle(...)
    MSLE(...)
    mean_squared_logarithmic_error(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_logarithmic_error
    

    Protobuf type tensorflow.metadata.v0.MeanSquaredLogarithmicError

  126. trait MeanSquaredLogarithmicErrorOrBuilder extends MessageOrBuilder
  127. final class MetaOptimizationTarget extends GeneratedMessageV3 with MetaOptimizationTargetOrBuilder

    The high-level objectives described by this problem statement. These
    objectives provide a basis for ranking models and can be optimized by a meta
    optimizer (e.g. a grid search over hyperparameters). A solution provider may
    also directly use the meta optimization targets to heuristically select
    losses, etc without any meta-optimization process. If not specified, the
    high-level meta optimization target is inferred from the task. These
    objectives do not need to be differentiable, as the solution provider may use
    proxy function to optimize model weights. Target definitions include tasks,
    metrics, and any weighted combination of them.
    

    The high-level objectives described by this problem statement. These
    objectives provide a basis for ranking models and can be optimized by a meta
    optimizer (e.g. a grid search over hyperparameters). A solution provider may
    also directly use the meta optimization targets to heuristically select
    losses, etc without any meta-optimization process. If not specified, the
    high-level meta optimization target is inferred from the task. These
    objectives do not need to be differentiable, as the solution provider may use
    proxy function to optimize model weights. Target definitions include tasks,
    metrics, and any weighted combination of them.
    

    Protobuf type tensorflow.metadata.v0.MetaOptimizationTarget

  128. trait MetaOptimizationTargetOrBuilder extends MessageOrBuilder
  129. final class Metric extends AnyRef
  130. sealed final class MetricType extends Enum[MetricType] with ProtocolMessageEnum

    Metric type indicates which direction of a real-valued metric is "better".
    For most message types, this is invariant. For custom message types,
    is_maximized == true is like MAXIMIZE, and otherwise MINIMIZE.
    

    Metric type indicates which direction of a real-valued metric is "better".
    For most message types, this is invariant. For custom message types,
    is_maximized == true is like MAXIMIZE, and otherwise MINIMIZE.
    

    Protobuf enum tensorflow.metadata.v0.MetricType

  131. final class MicroAUC extends GeneratedMessageV3 with MicroAUCOrBuilder

    Area under ROC-curve calculated globally for MultiClassClassification (model
    predicts a single label) or MultiLabelClassification (model predicts class
    probabilities). The area is calculated by treating the entire set of data as
    an aggregate result, and computing a single metric rather than k metrics
    (one for each target label) that get averaged together. For example, the FPR
    and TPR at a given point on the AUC curve for k targer labels are:
      FPR = (FP1 + FP2 + ... + FPk) / ((FP1 + FP2 + ... + FPk) +
                                       (TN1 + TN2 + ... + TNk))
      TPR = (TP1 + TP2 + ... +TPk) / ((TP1 + TP2 + ... + TPk) +
                                      (FN1 + FN2 + ... + FNk))
    

    Area under ROC-curve calculated globally for MultiClassClassification (model
    predicts a single label) or MultiLabelClassification (model predicts class
    probabilities). The area is calculated by treating the entire set of data as
    an aggregate result, and computing a single metric rather than k metrics
    (one for each target label) that get averaged together. For example, the FPR
    and TPR at a given point on the AUC curve for k targer labels are:
      FPR = (FP1 + FP2 + ... + FPk) / ((FP1 + FP2 + ... + FPk) +
                                       (TN1 + TN2 + ... + TNk))
      TPR = (TP1 + TP2 + ... +TPk) / ((TP1 + TP2 + ... + TPk) +
                                      (FN1 + FN2 + ... + FNk))
    

    Protobuf type tensorflow.metadata.v0.MicroAUC

  132. trait MicroAUCOrBuilder extends MessageOrBuilder
  133. final class MultiClassClassification extends GeneratedMessageV3 with MultiClassClassificationOrBuilder

    Configuration for a multi-class classification task.
    In this problem type, there are n_classes possible label values, and the
    model predicts a single label.
    The output is one of the class labels, out of n_classes possible classes.
    The output type will correspond to the label column type.
    

    Configuration for a multi-class classification task.
    In this problem type, there are n_classes possible label values, and the
    model predicts a single label.
    The output is one of the class labels, out of n_classes possible classes.
    The output type will correspond to the label column type.
    

    Protobuf type tensorflow.metadata.v0.MultiClassClassification

  134. trait MultiClassClassificationOrBuilder extends MessageOrBuilder
  135. final class MultiLabelClassification extends GeneratedMessageV3 with MultiLabelClassificationOrBuilder

    Configuration for a multi-label classification task.
    In this problem type there are n_classes unique possible label values
    overall. There can be from zero up to n_classes unique labels per example.
    The output, which is of type real number, is class probabilities associated
    with each class. It will be of n_classes dimension for each example, if
    n_classes is specified. Otherwise, the dimension will be set to the number
    of unique class labels that are dynamically inferred from the data based on
    dynamic_class_spec.
    

    Configuration for a multi-label classification task.
    In this problem type there are n_classes unique possible label values
    overall. There can be from zero up to n_classes unique labels per example.
    The output, which is of type real number, is class probabilities associated
    with each class. It will be of n_classes dimension for each example, if
    n_classes is specified. Otherwise, the dimension will be set to the number
    of unique class labels that are dynamically inferred from the data based on
    dynamic_class_spec.
    

    Protobuf type tensorflow.metadata.v0.MultiLabelClassification

  136. trait MultiLabelClassificationOrBuilder extends MessageOrBuilder
  137. final class MultilabelCrossEntropy extends GeneratedMessageV3 with MultilabelCrossEntropyOrBuilder

    Cross entropy for MultiLabelClassification where each target and
    prediction is the probabily of belonging to that class independent of other
    classes.
    

    Cross entropy for MultiLabelClassification where each target and
    prediction is the probabily of belonging to that class independent of other
    classes.
    

    Protobuf type tensorflow.metadata.v0.MultilabelCrossEntropy

  138. trait MultilabelCrossEntropyOrBuilder extends MessageOrBuilder
  139. final class NaturalLanguageDomain extends GeneratedMessageV3 with NaturalLanguageDomainOrBuilder

    Natural language text.
    

    Natural language text.
    

    Protobuf type tensorflow.metadata.v0.NaturalLanguageDomain

  140. trait NaturalLanguageDomainOrBuilder extends MessageOrBuilder
  141. final class NaturalLanguageStatistics extends GeneratedMessageV3 with NaturalLanguageStatisticsOrBuilder

    Statistics for a feature containing a NL domain.
    

    Statistics for a feature containing a NL domain.
    

    Protobuf type tensorflow.metadata.v0.NaturalLanguageStatistics

  142. trait NaturalLanguageStatisticsOrBuilder extends MessageOrBuilder
  143. final class NormalizedAbsoluteDifference extends GeneratedMessageV3 with NormalizedAbsoluteDifferenceOrBuilder

    Checks that the absolute count difference relative to the total count of both
    datasets is small. This metric is appropriate for comparing datasets that
    are expected to have similar absolute counts, and not necessarily just
    similar distributions.
    Computed as max_i | x_i - y_i |  / sum_i(x_i + y_i) for aligned datasets
    x and y. Results will be in the interval [0.0, 1.0] so sensible bounds should
    be in the interval [0.0, 1.0).
    

    Checks that the absolute count difference relative to the total count of both
    datasets is small. This metric is appropriate for comparing datasets that
    are expected to have similar absolute counts, and not necessarily just
    similar distributions.
    Computed as max_i | x_i - y_i |  / sum_i(x_i + y_i) for aligned datasets
    x and y. Results will be in the interval [0.0, 1.0] so sensible bounds should
    be in the interval [0.0, 1.0).
    

    Protobuf type tensorflow.metadata.v0.NormalizedAbsoluteDifference

  144. trait NormalizedAbsoluteDifferenceOrBuilder extends MessageOrBuilder
  145. final class NumericCrossStatistics extends GeneratedMessageV3 with NumericCrossStatisticsOrBuilder

    Protobuf type tensorflow.metadata.v0.NumericCrossStatistics

  146. trait NumericCrossStatisticsOrBuilder extends MessageOrBuilder
  147. final class NumericStatistics extends GeneratedMessageV3 with NumericStatisticsOrBuilder

    Statistics for a numeric feature in a dataset.
    

    Statistics for a numeric feature in a dataset.
    

    Protobuf type tensorflow.metadata.v0.NumericStatistics

  148. trait NumericStatisticsOrBuilder extends MessageOrBuilder
  149. final class NumericValueComparator extends GeneratedMessageV3 with NumericValueComparatorOrBuilder

    Checks that the ratio of the current value to the previous value is not below
    the min_fraction_threshold or above the max_fraction_threshold. That is,
    previous value * min_fraction_threshold <= current value <=
    previous value * max_fraction_threshold.
    To specify that the value cannot change, set both min_fraction_threshold and
    max_fraction_threshold to 1.0.
    

    Checks that the ratio of the current value to the previous value is not below
    the min_fraction_threshold or above the max_fraction_threshold. That is,
    previous value * min_fraction_threshold <= current value <=
    previous value * max_fraction_threshold.
    To specify that the value cannot change, set both min_fraction_threshold and
    max_fraction_threshold to 1.0.
    

    Protobuf type tensorflow.metadata.v0.NumericValueComparator

  150. trait NumericValueComparatorOrBuilder extends MessageOrBuilder
  151. final class OneDimensionalRegression extends GeneratedMessageV3 with OneDimensionalRegressionOrBuilder

    A one-dimensional regression task.
    The output is a single real number, whose range is dependent upon the
    objective.
    

    A one-dimensional regression task.
    The output is a single real number, whose range is dependent upon the
    objective.
    

    Protobuf type tensorflow.metadata.v0.OneDimensionalRegression

  152. trait OneDimensionalRegressionOrBuilder extends MessageOrBuilder
  153. final class OneSideRegion extends GeneratedMessageV3 with OneSideRegionOrBuilder

    Describes a chunk that applies to only one of the two artifacts.
    

    Describes a chunk that applies to only one of the two artifacts.
    

    Protobuf type tensorflow.metadata.v0.OneSideRegion

  154. trait OneSideRegionOrBuilder extends MessageOrBuilder
  155. final class Path extends GeneratedMessageV3 with PathOrBuilder

    A path is a more general substitute for the name of a field or feature that
    can be used for flat examples as well as structured data. For example, if
    we had data in a protocol buffer:
    message Person {
      int age = 1;
      optional string gender = 2;
      repeated Person parent = 3;
    }
    Thus, here the path {step:["parent", "age"]} in statistics would refer to the
    age of a parent, and {step:["parent", "parent", "age"]} would refer to the
    age of a grandparent. This allows us to distinguish between the statistics
    of parents' ages and grandparents' ages. In general, repeated messages are
    to be preferred to linked lists of arbitrary length.
    For SequenceExample, if we have a feature list "foo", this is represented
    by {step:["##SEQUENCE##", "foo"]}.
    

    A path is a more general substitute for the name of a field or feature that
    can be used for flat examples as well as structured data. For example, if
    we had data in a protocol buffer:
    message Person {
      int age = 1;
      optional string gender = 2;
      repeated Person parent = 3;
    }
    Thus, here the path {step:["parent", "age"]} in statistics would refer to the
    age of a parent, and {step:["parent", "parent", "age"]} would refer to the
    age of a grandparent. This allows us to distinguish between the statistics
    of parents' ages and grandparents' ages. In general, repeated messages are
    to be preferred to linked lists of arbitrary length.
    For SequenceExample, if we have a feature list "foo", this is represented
    by {step:["##SEQUENCE##", "foo"]}.
    

    Protobuf type tensorflow.metadata.v0.Path

  156. trait PathOrBuilder extends MessageOrBuilder
  157. final class PathOuterClass extends AnyRef
  158. final class PerformanceMetric extends GeneratedMessageV3 with PerformanceMetricOrBuilder

    Performance metrics measure the quality of a model. They need not be
    differentiable.
    

    Performance metrics measure the quality of a model. They need not be
    differentiable.
    

    Protobuf type tensorflow.metadata.v0.PerformanceMetric

  159. trait PerformanceMetricOrBuilder extends MessageOrBuilder
  160. final class Poisson extends GeneratedMessageV3 with PoissonOrBuilder

    poisson(...)
    DEPRECATED
    

    poisson(...)
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.Poisson

  161. trait PoissonOrBuilder extends MessageOrBuilder
  162. final class PrecisionAtK extends GeneratedMessageV3 with PrecisionAtKOrBuilder

    Protobuf type tensorflow.metadata.v0.PrecisionAtK

  163. trait PrecisionAtKOrBuilder extends MessageOrBuilder
  164. final class PrecisionAtRecall extends GeneratedMessageV3 with PrecisionAtRecallOrBuilder

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/PrecisionAtRecall
    

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/PrecisionAtRecall
    

    Protobuf type tensorflow.metadata.v0.PrecisionAtRecall

  165. trait PrecisionAtRecallOrBuilder extends MessageOrBuilder
  166. final class PredictionMean extends GeneratedMessageV3 with PredictionMeanOrBuilder

    The mean of the prediction across the dataset.
    

    The mean of the prediction across the dataset.
    

    Protobuf type tensorflow.metadata.v0.PredictionMean

  167. trait PredictionMeanOrBuilder extends MessageOrBuilder
  168. final class PresenceAndValencyStatistics extends GeneratedMessageV3 with PresenceAndValencyStatisticsOrBuilder

    Statistics about the presence and valency of feature values. Feature values
    could be nested lists. A feature in tf.Examples or other "flat" datasets has
    values of nest level 1 -- they are lists of primitives. A nest level N
    (N > 1) feature value is a list of lists of nest level (N - 1).
    This proto can be used to describe the presence and valency of values at each
    level.
    

    Statistics about the presence and valency of feature values. Feature values
    could be nested lists. A feature in tf.Examples or other "flat" datasets has
    values of nest level 1 -- they are lists of primitives. A nest level N
    (N > 1) feature value is a list of lists of nest level (N - 1).
    This proto can be used to describe the presence and valency of values at each
    level.
    

    Protobuf type tensorflow.metadata.v0.PresenceAndValencyStatistics

  169. trait PresenceAndValencyStatisticsOrBuilder extends MessageOrBuilder
  170. final class ProblemStatement extends GeneratedMessageV3 with ProblemStatementOrBuilder

    Protobuf type tensorflow.metadata.v0.ProblemStatement

  171. trait ProblemStatementOrBuilder extends MessageOrBuilder
  172. final class ProblemStatementOuterClass extends AnyRef
  173. final class RankHistogram extends GeneratedMessageV3 with RankHistogramOrBuilder

    The data used to create a rank histogram of a non-numeric feature of a
    dataset. The rank of a value in a feature can be used as a measure of how
    commonly the value is found in the entire dataset. With bucket sizes of one,
    this becomes a distribution function of all feature values.
    

    The data used to create a rank histogram of a non-numeric feature of a
    dataset. The rank of a value in a feature can be used as a measure of how
    commonly the value is found in the entire dataset. With bucket sizes of one,
    this becomes a distribution function of all feature values.
    

    Protobuf type tensorflow.metadata.v0.RankHistogram

  174. trait RankHistogramOrBuilder extends MessageOrBuilder
  175. final class RecallAtPrecision extends GeneratedMessageV3 with RecallAtPrecisionOrBuilder

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RecallAtPrecision
    

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RecallAtPrecision
    

    Protobuf type tensorflow.metadata.v0.RecallAtPrecision

  176. trait RecallAtPrecisionOrBuilder extends MessageOrBuilder
  177. final class ReduceOp extends GeneratedMessageV3 with ReduceOpOrBuilder

    Protobuf type tensorflow.metadata.v0.ReduceOp

  178. trait ReduceOpOrBuilder extends MessageOrBuilder
  179. final class Schema extends GeneratedMessageV3 with SchemaOrBuilder

    
    Message to represent schema information.
    NextID: 15
    

    
    Message to represent schema information.
    NextID: 15
    

    Protobuf type tensorflow.metadata.v0.Schema

  180. trait SchemaOrBuilder extends MessageOrBuilder
  181. final class SchemaOuterClass extends AnyRef
  182. final class SensitivityAtSpecificity extends GeneratedMessageV3 with SensitivityAtSpecificityOrBuilder

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity
    

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity
    

    Protobuf type tensorflow.metadata.v0.SensitivityAtSpecificity

  183. trait SensitivityAtSpecificityOrBuilder extends MessageOrBuilder
  184. final class SequenceLengthConstraints extends GeneratedMessageV3 with SequenceLengthConstraintsOrBuilder

    Encodes constraints on sequence lengths.
    

    Encodes constraints on sequence lengths.
    

    Protobuf type tensorflow.metadata.v0.SequenceLengthConstraints

  185. trait SequenceLengthConstraintsOrBuilder extends MessageOrBuilder
  186. final class SequenceMetadata extends GeneratedMessageV3 with SequenceMetadataOrBuilder

    Protobuf type tensorflow.metadata.v0.SequenceMetadata

  187. trait SequenceMetadataOrBuilder extends MessageOrBuilder
  188. final class SequenceValueConstraints extends GeneratedMessageV3 with SequenceValueConstraintsOrBuilder

    Encodes constraints on specific values in sequences.
    

    Encodes constraints on specific values in sequences.
    

    Protobuf type tensorflow.metadata.v0.SequenceValueConstraints

  189. trait SequenceValueConstraintsOrBuilder extends MessageOrBuilder
  190. final class SliceSql extends GeneratedMessageV3 with SliceSqlOrBuilder

    Protobuf type tensorflow.metadata.v0.SliceSql

  191. trait SliceSqlOrBuilder extends MessageOrBuilder
  192. sealed final class SliceValueTypes extends Enum[SliceValueTypes] with ProtocolMessageEnum

    Protobuf enum tensorflow.metadata.v0.SliceValueTypes

  193. final class SparseFeature extends GeneratedMessageV3 with SparseFeatureOrBuilder

    A sparse feature represents a sparse tensor that is encoded with a
    combination of raw features, namely index features and a value feature. Each
    index feature defines a list of indices in a different dimension.
    

    A sparse feature represents a sparse tensor that is encoded with a
    combination of raw features, namely index features and a value feature. Each
    index feature defines a list of indices in a different dimension.
    

    Protobuf type tensorflow.metadata.v0.SparseFeature

  194. trait SparseFeatureOrBuilder extends MessageOrBuilder
  195. final class SparseTopKCategoricalAccuracy extends GeneratedMessageV3 with SparseTopKCategoricalAccuracyOrBuilder

    sparse_top_k_categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_top_k_categorical_accuracy
    DEPRECATED
    

    sparse_top_k_categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_top_k_categorical_accuracy
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.SparseTopKCategoricalAccuracy

  196. trait SparseTopKCategoricalAccuracyOrBuilder extends MessageOrBuilder
  197. final class SpecificityAtSensitivity extends GeneratedMessageV3 with SpecificityAtSensitivityOrBuilder

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SpecificityAtSensitivity
    

    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SpecificityAtSensitivity
    

    Protobuf type tensorflow.metadata.v0.SpecificityAtSensitivity

  198. trait SpecificityAtSensitivityOrBuilder extends MessageOrBuilder
  199. final class SquaredHinge extends GeneratedMessageV3 with SquaredHingeOrBuilder

    squared_hinge(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/squared_hinge
    DEPRECATED
    

    squared_hinge(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/squared_hinge
    DEPRECATED
    

    Protobuf type tensorflow.metadata.v0.SquaredHinge

  200. trait SquaredHingeOrBuilder extends MessageOrBuilder
  201. final class Statistics extends AnyRef
  202. final class StringDomain extends GeneratedMessageV3 with StringDomainOrBuilder

    Encodes information for domains of string values.
    

    Encodes information for domains of string values.
    

    Protobuf type tensorflow.metadata.v0.StringDomain

  203. trait StringDomainOrBuilder extends MessageOrBuilder
  204. final class StringStatistics extends GeneratedMessageV3 with StringStatisticsOrBuilder

    Statistics for a string feature in a dataset.
    

    Statistics for a string feature in a dataset.
    

    Protobuf type tensorflow.metadata.v0.StringStatistics

  205. trait StringStatisticsOrBuilder extends MessageOrBuilder
  206. final class StructDomain extends GeneratedMessageV3 with StructDomainOrBuilder

    Domain for a recursive struct.
    NOTE: If a feature with a StructDomain is deprecated, then all the
    child features (features and sparse_features of the StructDomain) are also
    considered to be deprecated.  Similarly child features can only be in
    environments of the parent feature.
    

    Domain for a recursive struct.
    NOTE: If a feature with a StructDomain is deprecated, then all the
    child features (features and sparse_features of the StructDomain) are also
    considered to be deprecated.  Similarly child features can only be in
    environments of the parent feature.
    

    Protobuf type tensorflow.metadata.v0.StructDomain

  207. trait StructDomainOrBuilder extends MessageOrBuilder
  208. final class StructStatistics extends GeneratedMessageV3 with StructStatisticsOrBuilder

    Protobuf type tensorflow.metadata.v0.StructStatistics

  209. trait StructStatisticsOrBuilder extends MessageOrBuilder
  210. final class Task extends GeneratedMessageV3 with TaskOrBuilder

    Describes a single task in a model and all its properties.
    A task corresponds to a single output of the model.
    Multiple tasks in the same problem statement correspond to different outputs
    of the model.
    

    Describes a single task in a model and all its properties.
    A task corresponds to a single output of the model.
    Multiple tasks in the same problem statement correspond to different outputs
    of the model.
    

    Protobuf type tensorflow.metadata.v0.Task

  211. trait TaskOrBuilder extends MessageOrBuilder
  212. sealed final class TaskType extends Enum[TaskType] with ProtocolMessageEnum

    Protobuf enum tensorflow.metadata.v0.TaskType

  213. final class TensorRepresentation extends GeneratedMessageV3 with TensorRepresentationOrBuilder

    A TensorRepresentation captures the intent for converting columns in a
    dataset to TensorFlow Tensors (or more generally, tf.CompositeTensors).
    Note that one tf.CompositeTensor may consist of data from multiple columns,
    for example, a N-dimensional tf.SparseTensor may need N + 1 columns to
    provide the sparse indices and values.
    Note that the "column name" that a TensorRepresentation needs is a
    string, not a Path -- it means that the column name identifies a top-level
    Feature in the schema (i.e. you cannot specify a Feature nested in a STRUCT
    Feature).
    

    A TensorRepresentation captures the intent for converting columns in a
    dataset to TensorFlow Tensors (or more generally, tf.CompositeTensors).
    Note that one tf.CompositeTensor may consist of data from multiple columns,
    for example, a N-dimensional tf.SparseTensor may need N + 1 columns to
    provide the sparse indices and values.
    Note that the "column name" that a TensorRepresentation needs is a
    string, not a Path -- it means that the column name identifies a top-level
    Feature in the schema (i.e. you cannot specify a Feature nested in a STRUCT
    Feature).
    

    Protobuf type tensorflow.metadata.v0.TensorRepresentation

  214. final class TensorRepresentationGroup extends GeneratedMessageV3 with TensorRepresentationGroupOrBuilder

    A TensorRepresentationGroup is a collection of TensorRepresentations with
    names. These names may serve as identifiers when converting the dataset
    to a collection of Tensors or tf.CompositeTensors.
    For example, given the following group:
    {
      key: "dense_tensor"
      tensor_representation {
        dense_tensor {
          column_name: "univalent_feature"
          shape {
            dim {
              size: 1
            }
          }
          default_value {
            float_value: 0
          }
        }
      }
    }
    {
      key: "varlen_sparse_tensor"
      tensor_representation {
        varlen_sparse_tensor {
          column_name: "multivalent_feature"
        }
      }
    }
    
    Then the schema is expected to have feature "univalent_feature" and
    "multivalent_feature", and when a batch of data is converted to Tensors using
    this TensorRepresentationGroup, the result may be the following dict:
    {
      "dense_tensor": tf.Tensor(...),
      "varlen_sparse_tensor": tf.SparseTensor(...),
    }
    

    A TensorRepresentationGroup is a collection of TensorRepresentations with
    names. These names may serve as identifiers when converting the dataset
    to a collection of Tensors or tf.CompositeTensors.
    For example, given the following group:
    {
      key: "dense_tensor"
      tensor_representation {
        dense_tensor {
          column_name: "univalent_feature"
          shape {
            dim {
              size: 1
            }
          }
          default_value {
            float_value: 0
          }
        }
      }
    }
    {
      key: "varlen_sparse_tensor"
      tensor_representation {
        varlen_sparse_tensor {
          column_name: "multivalent_feature"
        }
      }
    }
    
    Then the schema is expected to have feature "univalent_feature" and
    "multivalent_feature", and when a batch of data is converted to Tensors using
    this TensorRepresentationGroup, the result may be the following dict:
    {
      "dense_tensor": tf.Tensor(...),
      "varlen_sparse_tensor": tf.SparseTensor(...),
    }
    

    Protobuf type tensorflow.metadata.v0.TensorRepresentationGroup

  215. trait TensorRepresentationGroupOrBuilder extends MessageOrBuilder
  216. trait TensorRepresentationOrBuilder extends MessageOrBuilder
  217. final class TimeDomain extends GeneratedMessageV3 with TimeDomainOrBuilder

    Time or date representation.
    

    Time or date representation.
    

    Protobuf type tensorflow.metadata.v0.TimeDomain

  218. trait TimeDomainOrBuilder extends MessageOrBuilder
  219. final class TimeOfDayDomain extends GeneratedMessageV3 with TimeOfDayDomainOrBuilder

    Time of day, without a particular date.
    

    Time of day, without a particular date.
    

    Protobuf type tensorflow.metadata.v0.TimeOfDayDomain

  220. trait TimeOfDayDomainOrBuilder extends MessageOrBuilder
  221. final class TopKCategoricalAccuracy extends GeneratedMessageV3 with TopKCategoricalAccuracyOrBuilder

    top_k_categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
    

    top_k_categorical_accuracy(...)
    https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
    

    Protobuf type tensorflow.metadata.v0.TopKCategoricalAccuracy

  222. trait TopKCategoricalAccuracyOrBuilder extends MessageOrBuilder
  223. final class TopKClassification extends GeneratedMessageV3 with TopKClassificationOrBuilder

    Configuration for a top-K classification task.
    In this problem type, there are n_classes possible label values, and the
    model predicts n_predicted_labels labels.
    The output is a sequence of n_predicted_labels labels, out of n_classes
    possible classes. The order of the predicted output labels is determined
    by the predictions_order field.
    (*) MultiClassClassification is the same as TopKClassification with
        n_predicted_labels = 1.
    (*) TopKClassification does NOT mean multi-class multi-label classification:
        e.g., the output contains a sequence of labels, all coming from the same
        label column in the data.
    

    Configuration for a top-K classification task.
    In this problem type, there are n_classes possible label values, and the
    model predicts n_predicted_labels labels.
    The output is a sequence of n_predicted_labels labels, out of n_classes
    possible classes. The order of the predicted output labels is determined
    by the predictions_order field.
    (*) MultiClassClassification is the same as TopKClassification with
        n_predicted_labels = 1.
    (*) TopKClassification does NOT mean multi-class multi-label classification:
        e.g., the output contains a sequence of labels, all coming from the same
        label column in the data.
    

    Protobuf type tensorflow.metadata.v0.TopKClassification

  224. trait TopKClassificationOrBuilder extends MessageOrBuilder
  225. final class Type extends GeneratedMessageV3 with TypeOrBuilder

    The type of a head or meta-objective. Specifies the label, weight,
    and output type of the head.
    TODO(martinz): add logistic regression.
    

    The type of a head or meta-objective. Specifies the label, weight,
    and output type of the head.
    TODO(martinz): add logistic regression.
    

    Protobuf type tensorflow.metadata.v0.Type

  226. trait TypeOrBuilder extends MessageOrBuilder
  227. final class URLDomain extends GeneratedMessageV3 with URLDomainOrBuilder

    A URL, see: https://en.wikipedia.org/wiki/URL
    

    A URL, see: https://en.wikipedia.org/wiki/URL
    

    Protobuf type tensorflow.metadata.v0.URLDomain

  228. trait URLDomainOrBuilder extends MessageOrBuilder
  229. final class UnchangedRegion extends GeneratedMessageV3 with UnchangedRegionOrBuilder

    Describes a chunk that is the same in the two artifacts.
    

    Describes a chunk that is the same in the two artifacts.
    

    Protobuf type tensorflow.metadata.v0.UnchangedRegion

  230. trait UnchangedRegionOrBuilder extends MessageOrBuilder
  231. final class UniqueConstraints extends GeneratedMessageV3 with UniqueConstraintsOrBuilder

    Checks that the number of unique values is greater than or equal to the min,
    and less than or equal to the max.
    

    Checks that the number of unique values is greater than or equal to the min,
    and less than or equal to the max.
    

    Protobuf type tensorflow.metadata.v0.UniqueConstraints

  232. trait UniqueConstraintsOrBuilder extends MessageOrBuilder
  233. final class ValueCount extends GeneratedMessageV3 with ValueCountOrBuilder

    Limits on maximum and minimum number of values in a
    single example (when the feature is present). Use this when the minimum
    value count can be different than the maximum value count. Otherwise prefer
    FixedShape.
    

    Limits on maximum and minimum number of values in a
    single example (when the feature is present). Use this when the minimum
    value count can be different than the maximum value count. Otherwise prefer
    FixedShape.
    

    Protobuf type tensorflow.metadata.v0.ValueCount

  234. final class ValueCountList extends GeneratedMessageV3 with ValueCountListOrBuilder

    Protobuf type tensorflow.metadata.v0.ValueCountList

  235. trait ValueCountListOrBuilder extends MessageOrBuilder
  236. trait ValueCountOrBuilder extends MessageOrBuilder
  237. final class WeightedCommonStatistics extends GeneratedMessageV3 with WeightedCommonStatisticsOrBuilder

    Common weighted statistics for all feature types. Statistics counting number
    of values (i.e., avg_num_values and tot_num_values) include NaNs.
    If the weighted column is missing, then this counts as a weight of 1
    for that example.
    

    Common weighted statistics for all feature types. Statistics counting number
    of values (i.e., avg_num_values and tot_num_values) include NaNs.
    If the weighted column is missing, then this counts as a weight of 1
    for that example.
    

    Protobuf type tensorflow.metadata.v0.WeightedCommonStatistics

  238. trait WeightedCommonStatisticsOrBuilder extends MessageOrBuilder
  239. final class WeightedFeature extends GeneratedMessageV3 with WeightedFeatureOrBuilder

    Represents a weighted feature that is encoded as a combination of raw base
    features. The `weight_feature` should be a float feature with identical
    shape as the `feature`. This is useful for representing weights associated
    with categorical tokens (e.g. a TFIDF weight associated with each token).
    TODO(b/142122960): Handle WeightedCategorical end to end in TFX (validation,
    TFX Unit Testing, etc)
    

    Represents a weighted feature that is encoded as a combination of raw base
    features. The `weight_feature` should be a float feature with identical
    shape as the `feature`. This is useful for representing weights associated
    with categorical tokens (e.g. a TFIDF weight associated with each token).
    TODO(b/142122960): Handle WeightedCategorical end to end in TFX (validation,
    TFX Unit Testing, etc)
    

    Protobuf type tensorflow.metadata.v0.WeightedFeature

  240. trait WeightedFeatureOrBuilder extends MessageOrBuilder
  241. final class WeightedNaturalLanguageStatistics extends GeneratedMessageV3 with WeightedNaturalLanguageStatisticsOrBuilder

    Statistics for a weighted feature with an NL domain.
    

    Statistics for a weighted feature with an NL domain.
    

    Protobuf type tensorflow.metadata.v0.WeightedNaturalLanguageStatistics

  242. trait WeightedNaturalLanguageStatisticsOrBuilder extends MessageOrBuilder
  243. final class WeightedNumericStatistics extends GeneratedMessageV3 with WeightedNumericStatisticsOrBuilder

    Statistics for a weighted numeric feature in a dataset.
    

    Statistics for a weighted numeric feature in a dataset.
    

    Protobuf type tensorflow.metadata.v0.WeightedNumericStatistics

  244. trait WeightedNumericStatisticsOrBuilder extends MessageOrBuilder
  245. final class WeightedStringStatistics extends GeneratedMessageV3 with WeightedStringStatisticsOrBuilder

    Statistics for a weighted string feature in a dataset.
    

    Statistics for a weighted string feature in a dataset.
    

    Protobuf type tensorflow.metadata.v0.WeightedStringStatistics

  246. trait WeightedStringStatisticsOrBuilder extends MessageOrBuilder

Ungrouped