package v0
Type Members
- final class AUC extends GeneratedMessage with AUCOrBuilder
Area under curve for the ROC-curve. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
Area under curve for the ROC-curve. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
Protobuf type
tensorflow.metadata.v0.AUC- Annotations
- @Generated()
- trait AUCOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class AUCPrecisionRecall extends GeneratedMessage with AUCPrecisionRecallOrBuilder
Area under curve for the precision-recall-curve. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
Area under curve for the precision-recall-curve. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/AUC
Protobuf type
tensorflow.metadata.v0.AUCPrecisionRecall- Annotations
- @Generated()
- trait AUCPrecisionRecallOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class AllowlistDeriver extends GeneratedMessage with AllowlistDeriverOrBuilder
Protobuf type
tensorflow.metadata.v0.AllowlistDeriverProtobuf type
tensorflow.metadata.v0.AllowlistDeriver- Annotations
- @Generated()
- trait AllowlistDeriverOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Annotation extends GeneratedMessage with AnnotationOrBuilder
Additional information about the schema or about a feature.
Additional information about the schema or about a feature.
Protobuf type
tensorflow.metadata.v0.Annotation- Annotations
- @Generated()
- trait AnnotationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Anomalies extends GeneratedMessage with AnomaliesOrBuilder
Message to represent the anomalies, which describe the mismatches (if any) between the stats and the schema.
Message to represent the anomalies, which describe the mismatches (if any) between the stats and the schema.
Protobuf type
tensorflow.metadata.v0.Anomalies- Annotations
- @Generated()
- trait AnomaliesOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class AnomaliesOuterClass extends GeneratedFile
- Annotations
- @Generated()
- final class AnomalyInfo extends GeneratedMessage with AnomalyInfoOrBuilder
Message to represent information about an individual anomaly.
Message to represent information about an individual anomaly.
Protobuf type
tensorflow.metadata.v0.AnomalyInfo- Annotations
- @Generated()
- trait AnomalyInfoOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ArgmaxTopK extends GeneratedMessage with ArgmaxTopKOrBuilder
Protobuf type
tensorflow.metadata.v0.ArgmaxTopKProtobuf type
tensorflow.metadata.v0.ArgmaxTopK- Annotations
- @Generated()
- trait ArgmaxTopKOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BinaryAccuracy extends GeneratedMessage with BinaryAccuracyOrBuilder
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_accuracy
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_accuracy
Protobuf type
tensorflow.metadata.v0.BinaryAccuracy- Annotations
- @Generated()
- trait BinaryAccuracyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BinaryClassification extends GeneratedMessage with BinaryClassificationOrBuilder
Configuration for a binary classification task. The output is one of two possible class labels, encoded as the same type as the label column. BinaryClassification is the same as MultiClassClassification with n_classes = 2.
Configuration for a binary classification task. The output is one of two possible class labels, encoded as the same type as the label column. BinaryClassification is the same as MultiClassClassification with n_classes = 2.
Protobuf type
tensorflow.metadata.v0.BinaryClassification- Annotations
- @Generated()
- trait BinaryClassificationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BinaryCrossEntropy extends GeneratedMessage with BinaryCrossEntropyOrBuilder
Binary cross entropy as a metric is equal to the negative log likelihood (see logistic regression). In addition, when used to solve a binary classification task, binary cross entropy implies that the binary label will maximize binary accuracy. binary_crossentropy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_crossentropy
Binary cross entropy as a metric is equal to the negative log likelihood (see logistic regression). In addition, when used to solve a binary classification task, binary cross entropy implies that the binary label will maximize binary accuracy. binary_crossentropy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/binary_crossentropy
Protobuf type
tensorflow.metadata.v0.BinaryCrossEntropy- Annotations
- @Generated()
- trait BinaryCrossEntropyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BlockUtility extends GeneratedMessage with BlockUtilityOrBuilder
DEPRECATED
DEPRECATED
Protobuf type
tensorflow.metadata.v0.BlockUtility- Annotations
- @Generated()
- trait BlockUtilityOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BoolDomain extends GeneratedMessage with BoolDomainOrBuilder
Encodes information about the domain of a boolean attribute that encodes its TRUE/FALSE values as strings, or 0=false, 1=true. Note that FeatureType could be either INT or BYTES.
Encodes information about the domain of a boolean attribute that encodes its TRUE/FALSE values as strings, or 0=false, 1=true. Note that FeatureType could be either INT or BYTES.
Protobuf type
tensorflow.metadata.v0.BoolDomain- Annotations
- @Generated()
- trait BoolDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class BytesStatistics extends GeneratedMessage with BytesStatisticsOrBuilder
Statistics for a bytes feature in a dataset.
Statistics for a bytes feature in a dataset.
Protobuf type
tensorflow.metadata.v0.BytesStatistics- Annotations
- @Generated()
- trait BytesStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CategoricalAccuracy extends GeneratedMessage with CategoricalAccuracyOrBuilder
categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_accuracy
categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_accuracy
Protobuf type
tensorflow.metadata.v0.CategoricalAccuracy- Annotations
- @Generated()
- trait CategoricalAccuracyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CategoricalCrossEntropy extends GeneratedMessage with CategoricalCrossEntropyOrBuilder
categorical_crossentropy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_crossentropy
categorical_crossentropy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_crossentropy
Protobuf type
tensorflow.metadata.v0.CategoricalCrossEntropy- Annotations
- @Generated()
- trait CategoricalCrossEntropyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CategoricalCrossStatistics extends GeneratedMessage with CategoricalCrossStatisticsOrBuilder
Protobuf type
tensorflow.metadata.v0.CategoricalCrossStatisticsProtobuf type
tensorflow.metadata.v0.CategoricalCrossStatistics- Annotations
- @Generated()
- trait CategoricalCrossStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ChangedRegion extends GeneratedMessage with ChangedRegionOrBuilder
Describes a chunk that represents changes in both artifacts over the same number of lines.
Describes a chunk that represents changes in both artifacts over the same number of lines.
Protobuf type
tensorflow.metadata.v0.ChangedRegion- Annotations
- @Generated()
- trait ChangedRegionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CommonStatistics extends GeneratedMessage with CommonStatisticsOrBuilder
Common statistics for all feature types. Statistics counting number of values (i.e., min_num_values, max_num_values, avg_num_values, and tot_num_values) include NaNs. For nested features with N nested levels (N > 1), the statistics counting number of values will rely on the innermost level.
Common statistics for all feature types. Statistics counting number of values (i.e., min_num_values, max_num_values, avg_num_values, and tot_num_values) include NaNs. For nested features with N nested levels (N > 1), the statistics counting number of values will rely on the innermost level.
Protobuf type
tensorflow.metadata.v0.CommonStatistics- Annotations
- @Generated()
- trait CommonStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Cosine extends GeneratedMessage with CosineOrBuilder
cosine(...) cosine_proximity(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/cosine_proximity DEPRECATED
cosine(...) cosine_proximity(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/cosine_proximity DEPRECATED
Protobuf type
tensorflow.metadata.v0.Cosine- Annotations
- @Generated()
- trait CosineOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CrossFeatureStatistics extends GeneratedMessage with CrossFeatureStatisticsOrBuilder
NextID: 8
NextID: 8
Protobuf type
tensorflow.metadata.v0.CrossFeatureStatistics- Annotations
- @Generated()
- trait CrossFeatureStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CustomMetric extends GeneratedMessage with CustomMetricOrBuilder
A custom metric. Prefer using or adding an explicit metric message and only use this generic message as a last resort. NEXT_TAG: 4
A custom metric. Prefer using or adding an explicit metric message and only use this generic message as a last resort. NEXT_TAG: 4
Protobuf type
tensorflow.metadata.v0.CustomMetric- Annotations
- @Generated()
- trait CustomMetricOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class CustomStatistic extends GeneratedMessage with CustomStatisticOrBuilder
Stores the name and value of any custom statistic. The value can be a string, double, or histogram.
Stores the name and value of any custom statistic. The value can be a string, double, or histogram.
Protobuf type
tensorflow.metadata.v0.CustomStatistic- Annotations
- @Generated()
- trait CustomStatisticOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DatasetConstraints extends GeneratedMessage with DatasetConstraintsOrBuilder
Constraints on the entire dataset.
Constraints on the entire dataset.
Protobuf type
tensorflow.metadata.v0.DatasetConstraints- Annotations
- @Generated()
- trait DatasetConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DatasetFeatureStatistics extends GeneratedMessage with DatasetFeatureStatisticsOrBuilder
The feature statistics for a single dataset.
The feature statistics for a single dataset.
Protobuf type
tensorflow.metadata.v0.DatasetFeatureStatistics- Annotations
- @Generated()
- final class DatasetFeatureStatisticsList extends GeneratedMessage with DatasetFeatureStatisticsListOrBuilder
A list of features statistics for different datasets. If you wish to compare different datasets using this list, then the DatasetFeatureStatistics entries should all contain the same list of features. LINT.IfChange
A list of features statistics for different datasets. If you wish to compare different datasets using this list, then the DatasetFeatureStatistics entries should all contain the same list of features. LINT.IfChange
Protobuf type
tensorflow.metadata.v0.DatasetFeatureStatisticsList- Annotations
- @Generated()
- trait DatasetFeatureStatisticsListOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- trait DatasetFeatureStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DerivedFeature extends GeneratedFile
- Annotations
- @Generated()
- final class DerivedFeatureConfig extends GeneratedMessage with DerivedFeatureConfigOrBuilder
Stores configuration for a variety of canned feature derivers. TODO(b/227478330): Consider validating config in merge_util.cc.
Stores configuration for a variety of canned feature derivers. TODO(b/227478330): Consider validating config in merge_util.cc.
Protobuf type
tensorflow.metadata.v0.DerivedFeatureConfig- Annotations
- @Generated()
- trait DerivedFeatureConfigOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DerivedFeatureSource extends GeneratedMessage with DerivedFeatureSourceOrBuilder
DerivedFeatureSource tracks information about the source of a derived feature. Derived features are computed from ordinary features for the purposes of statistics collection and validation, but do not exist in the dataset. Experimental and subject to change. LINT.IfChange
DerivedFeatureSource tracks information about the source of a derived feature. Derived features are computed from ordinary features for the purposes of statistics collection and validation, but do not exist in the dataset. Experimental and subject to change. LINT.IfChange
Protobuf type
tensorflow.metadata.v0.DerivedFeatureSource- Annotations
- @Generated()
- trait DerivedFeatureSourceOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DiffRegion extends GeneratedMessage with DiffRegionOrBuilder
Describes a region in the comparison between two text artifacts. Note that a region also contains the contents of the two artifacts that correspond to the region.
Describes a region in the comparison between two text artifacts. Note that a region also contains the contents of the two artifacts that correspond to the region.
Protobuf type
tensorflow.metadata.v0.DiffRegion- Annotations
- @Generated()
- trait DiffRegionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DistributionConstraints extends GeneratedMessage with DistributionConstraintsOrBuilder
Models constraints on the distribution of a feature's values. TODO(martinz): replace min_domain_mass with max_off_domain (but slowly).
Models constraints on the distribution of a feature's values. TODO(martinz): replace min_domain_mass with max_off_domain (but slowly).
Protobuf type
tensorflow.metadata.v0.DistributionConstraints- Annotations
- @Generated()
- trait DistributionConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DriftSkewInfo extends GeneratedMessage with DriftSkewInfoOrBuilder
Message to contain the result of the drift/skew measurements for a feature.
Message to contain the result of the drift/skew measurements for a feature.
Protobuf type
tensorflow.metadata.v0.DriftSkewInfo- Annotations
- @Generated()
- trait DriftSkewInfoOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class DynamicClassSpec extends GeneratedMessage with DynamicClassSpecOrBuilder
Specifies a dynamic multiclass/multi-label problem where the number of label classes is inferred from the data.
Specifies a dynamic multiclass/multi-label problem where the number of label classes is inferred from the data.
Protobuf type
tensorflow.metadata.v0.DynamicClassSpec- Annotations
- @Generated()
- trait DynamicClassSpecOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FalseNegativeRateAtThreshold extends GeneratedMessage with FalseNegativeRateAtThresholdOrBuilder
Protobuf type
tensorflow.metadata.v0.FalseNegativeRateAtThresholdProtobuf type
tensorflow.metadata.v0.FalseNegativeRateAtThreshold- Annotations
- @Generated()
- trait FalseNegativeRateAtThresholdOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FalsePositiveRateAtThreshold extends GeneratedMessage with FalsePositiveRateAtThresholdOrBuilder
Protobuf type
tensorflow.metadata.v0.FalsePositiveRateAtThresholdProtobuf type
tensorflow.metadata.v0.FalsePositiveRateAtThreshold- Annotations
- @Generated()
- trait FalsePositiveRateAtThresholdOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Feature extends GeneratedMessage with FeatureOrBuilder
Describes schema-level information about a specific feature. NextID: 36
Describes schema-level information about a specific feature. NextID: 36
Protobuf type
tensorflow.metadata.v0.Feature- Annotations
- @Generated()
- final class FeatureComparator extends GeneratedMessage with FeatureComparatorOrBuilder
Protobuf type
tensorflow.metadata.v0.FeatureComparatorProtobuf type
tensorflow.metadata.v0.FeatureComparator- Annotations
- @Generated()
- trait FeatureComparatorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FeatureCoverageConstraints extends GeneratedMessage with FeatureCoverageConstraintsOrBuilder
Encodes vocabulary coverage constraints.
Encodes vocabulary coverage constraints.
Protobuf type
tensorflow.metadata.v0.FeatureCoverageConstraints- Annotations
- @Generated()
- trait FeatureCoverageConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FeatureNameStatistics extends GeneratedMessage with FeatureNameStatisticsOrBuilder
The complete set of statistics for a given feature name for a dataset. NextID: 11
The complete set of statistics for a given feature name for a dataset. NextID: 11
Protobuf type
tensorflow.metadata.v0.FeatureNameStatistics- Annotations
- @Generated()
- trait FeatureNameStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- trait FeatureOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FeaturePresence extends GeneratedMessage with FeaturePresenceOrBuilder
Describes constraints on the presence of the feature in the data.
Describes constraints on the presence of the feature in the data.
Protobuf type
tensorflow.metadata.v0.FeaturePresence- Annotations
- @Generated()
- trait FeaturePresenceOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FeaturePresenceWithinGroup extends GeneratedMessage with FeaturePresenceWithinGroupOrBuilder
Records constraints on the presence of a feature inside a "group" context (e.g., .presence inside a group of features that define a sequence).
Records constraints on the presence of a feature inside a "group" context (e.g., .presence inside a group of features that define a sequence).
Protobuf type
tensorflow.metadata.v0.FeaturePresenceWithinGroup- Annotations
- @Generated()
- trait FeaturePresenceWithinGroupOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- sealed final class FeatureType extends Enum[FeatureType] with ProtocolMessageEnum
Describes the physical representation of a feature. It may be different than the logical representation, which is represented as a Domain.
Describes the physical representation of a feature. It may be different than the logical representation, which is represented as a Domain.
Protobuf enum
tensorflow.metadata.v0.FeatureType- Annotations
- @Generated()
- final class FixedShape extends GeneratedMessage with FixedShapeOrBuilder
Specifies a fixed shape for the feature's values. The immediate implication is that each feature has a fixed number of values. Moreover, these values can be parsed in a multi-dimensional tensor using the specified axis sizes. The FixedShape defines a lexicographical ordering of the data. For instance, if there is a FixedShape { dim {size:3} dim {size:2} } then tensor[0][0]=field[0] then tensor[0][1]=field[1] then tensor[1][0]=field[2] then tensor[1][1]=field[3] then tensor[2][0]=field[4] then tensor[2][1]=field[5] The FixedShape message is identical with the tensorflow.TensorShape proto message for fully defined shapes. The FixedShape message cannot represent unknown dimensions or an unknown rank.Specifies a fixed shape for the feature's values. The immediate implication is that each feature has a fixed number of values. Moreover, these values can be parsed in a multi-dimensional tensor using the specified axis sizes. The FixedShape defines a lexicographical ordering of the data. For instance, if there is a FixedShape { dim {size:3} dim {size:2} } then tensor[0][0]=field[0] then tensor[0][1]=field[1] then tensor[1][0]=field[2] then tensor[1][1]=field[3] then tensor[2][0]=field[4] then tensor[2][1]=field[5] The FixedShape message is identical with the tensorflow.TensorShape proto message for fully defined shapes. The FixedShape message cannot represent unknown dimensions or an unknown rank.Protobuf type
tensorflow.metadata.v0.FixedShape- Annotations
- @Generated()
- trait FixedShapeOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class FloatDomain extends GeneratedMessage with FloatDomainOrBuilder
Encodes information for domains of float values. Note that FeatureType could be either INT or BYTES.
Encodes information for domains of float values. Note that FeatureType could be either INT or BYTES.
Protobuf type
tensorflow.metadata.v0.FloatDomain- Annotations
- @Generated()
- trait FloatDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class HiddenRegion extends GeneratedMessage with HiddenRegionOrBuilder
A chunk that represents identical lines, whose contents are hidden.
A chunk that represents identical lines, whose contents are hidden.
Protobuf type
tensorflow.metadata.v0.HiddenRegion- Annotations
- @Generated()
- trait HiddenRegionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Hinge extends GeneratedMessage with HingeOrBuilder
Linear Hinge Loss hinge(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge DEPRECATED
Linear Hinge Loss hinge(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge DEPRECATED
Protobuf type
tensorflow.metadata.v0.Hinge- Annotations
- @Generated()
- trait HingeOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Histogram extends GeneratedMessage with HistogramOrBuilder
The data used to create a histogram of a numeric feature for a dataset.
The data used to create a histogram of a numeric feature for a dataset.
Protobuf type
tensorflow.metadata.v0.Histogram- Annotations
- @Generated()
- trait HistogramOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class HistogramSelection extends GeneratedMessage with HistogramSelectionOrBuilder
Protobuf type
tensorflow.metadata.v0.HistogramSelectionProtobuf type
tensorflow.metadata.v0.HistogramSelection- Annotations
- @Generated()
- trait HistogramSelectionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ImageDomain extends GeneratedMessage with ImageDomainOrBuilder
Image data.
Image data.
Protobuf type
tensorflow.metadata.v0.ImageDomain- Annotations
- @Generated()
- trait ImageDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ImageQualityDeriver extends GeneratedMessage with ImageQualityDeriverOrBuilder
Protobuf type
tensorflow.metadata.v0.ImageQualityDeriverProtobuf type
tensorflow.metadata.v0.ImageQualityDeriver- Annotations
- @Generated()
- trait ImageQualityDeriverOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class InfinityNorm extends GeneratedMessage with InfinityNormOrBuilder
Checks that the L-infinity norm is below a certain threshold between the two discrete distributions. Since this is applied to a FeatureNameStatistics, it only considers the top k. L_infty(p,q) = max_i |p_i-q_i|
Checks that the L-infinity norm is below a certain threshold between the two discrete distributions. Since this is applied to a FeatureNameStatistics, it only considers the top k. L_infty(p,q) = max_i |p_i-q_i|
Protobuf type
tensorflow.metadata.v0.InfinityNorm- Annotations
- @Generated()
- trait InfinityNormOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class IntDomain extends GeneratedMessage with IntDomainOrBuilder
Encodes information for domains of integer values. Note that FeatureType could be either INT or BYTES.
Encodes information for domains of integer values. Note that FeatureType could be either INT or BYTES.
Protobuf type
tensorflow.metadata.v0.IntDomain- Annotations
- @Generated()
- trait IntDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class JensenShannonDivergence extends GeneratedMessage with JensenShannonDivergenceOrBuilder
Checks that the approximate Jensen-Shannon Divergence is below a certain threshold between the two distributions.
Checks that the approximate Jensen-Shannon Divergence is below a certain threshold between the two distributions.
Protobuf type
tensorflow.metadata.v0.JensenShannonDivergence- Annotations
- @Generated()
- trait JensenShannonDivergenceOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class KullbackLeiblerDivergence extends GeneratedMessage with KullbackLeiblerDivergenceOrBuilder
kld(...) kullback_leibler_divergence(...) KLD(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/kullback_leibler_divergence DEPRECATED
kld(...) kullback_leibler_divergence(...) KLD(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/kullback_leibler_divergence DEPRECATED
Protobuf type
tensorflow.metadata.v0.KullbackLeiblerDivergence- Annotations
- @Generated()
- trait KullbackLeiblerDivergenceOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- sealed final class LifecycleStage extends Enum[LifecycleStage] with ProtocolMessageEnum
LifecycleStage. Only UNKNOWN_STAGE, BETA, PRODUCTION, and VALIDATION_DERIVED features are actually validated. PLANNED, ALPHA, DISABLED, and DEBUG are treated as DEPRECATED.
LifecycleStage. Only UNKNOWN_STAGE, BETA, PRODUCTION, and VALIDATION_DERIVED features are actually validated. PLANNED, ALPHA, DISABLED, and DEBUG are treated as DEPRECATED.
Protobuf enum
tensorflow.metadata.v0.LifecycleStage- Annotations
- @Generated()
- final class LiftSeries extends GeneratedMessage with LiftSeriesOrBuilder
Container for lift information for a specific y-value.
Container for lift information for a specific y-value.
Protobuf type
tensorflow.metadata.v0.LiftSeries- Annotations
- @Generated()
- trait LiftSeriesOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class LiftStatistics extends GeneratedMessage with LiftStatisticsOrBuilder
Protobuf type
tensorflow.metadata.v0.LiftStatisticsProtobuf type
tensorflow.metadata.v0.LiftStatistics- Annotations
- @Generated()
- trait LiftStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class LogisticRegression extends GeneratedMessage with LogisticRegressionOrBuilder
AKA the negative log likelihood or log loss. Given a label y\in {0,1} and a predicted probability p in [0,1]: -yln(p)-(1-y)ln(1-p) TODO(martinz): if this is interpreted the same as binary_cross_entropy, we may need to revisit the semantics. DEPRECATEDAKA the negative log likelihood or log loss. Given a label y\in {0,1} and a predicted probability p in [0,1]: -yln(p)-(1-y)ln(1-p) TODO(martinz): if this is interpreted the same as binary_cross_entropy, we may need to revisit the semantics. DEPRECATEDProtobuf type
tensorflow.metadata.v0.LogisticRegression- Annotations
- @Generated()
- trait LogisticRegressionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MIDDomain extends GeneratedMessage with MIDDomainOrBuilder
Knowledge graph ID, see: https://www.wikidata.org/wiki/Property:P646
Knowledge graph ID, see: https://www.wikidata.org/wiki/Property:P646
Protobuf type
tensorflow.metadata.v0.MIDDomain- Annotations
- @Generated()
- trait MIDDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MaximumMeanDiscrepancy extends GeneratedMessage with MaximumMeanDiscrepancyOrBuilder
https://www.tensorflow.org/responsible_ai/model_remediation/api_docs/python/model_remediation/min_diff/losses/MMDLoss
https://www.tensorflow.org/responsible_ai/model_remediation/api_docs/python/model_remediation/min_diff/losses/MMDLoss
Protobuf type
tensorflow.metadata.v0.MaximumMeanDiscrepancy- Annotations
- @Generated()
- trait MaximumMeanDiscrepancyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MeanAbsoluteError extends GeneratedMessage with MeanAbsoluteErrorOrBuilder
MAE(...) mae(...) mean_absolute_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_error
MAE(...) mae(...) mean_absolute_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_error
Protobuf type
tensorflow.metadata.v0.MeanAbsoluteError- Annotations
- @Generated()
- trait MeanAbsoluteErrorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MeanAbsolutePercentageError extends GeneratedMessage with MeanAbsolutePercentageErrorOrBuilder
MAPE(...) mape(...) mean_absolute_percentage_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_percentage_error
MAPE(...) mape(...) mean_absolute_percentage_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_absolute_percentage_error
Protobuf type
tensorflow.metadata.v0.MeanAbsolutePercentageError- Annotations
- @Generated()
- trait MeanAbsolutePercentageErrorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MeanReciprocalRank extends GeneratedMessage with MeanReciprocalRankOrBuilder
Protobuf type
tensorflow.metadata.v0.MeanReciprocalRankProtobuf type
tensorflow.metadata.v0.MeanReciprocalRank- Annotations
- @Generated()
- trait MeanReciprocalRankOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MeanSquaredError extends GeneratedMessage with MeanSquaredErrorOrBuilder
MSE(...) mse(...) mean_squared_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_error
MSE(...) mse(...) mean_squared_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_error
Protobuf type
tensorflow.metadata.v0.MeanSquaredError- Annotations
- @Generated()
- trait MeanSquaredErrorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MeanSquaredLogarithmicError extends GeneratedMessage with MeanSquaredLogarithmicErrorOrBuilder
msle(...) MSLE(...) mean_squared_logarithmic_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_logarithmic_error
msle(...) MSLE(...) mean_squared_logarithmic_error(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/mean_squared_logarithmic_error
Protobuf type
tensorflow.metadata.v0.MeanSquaredLogarithmicError- Annotations
- @Generated()
- trait MeanSquaredLogarithmicErrorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MetaOptimizationTarget extends GeneratedMessage with MetaOptimizationTargetOrBuilder
The high-level objectives described by this problem statement. These objectives provide a basis for ranking models and can be optimized by a meta optimizer (e.g. a grid search over hyperparameters). A solution provider may also directly use the meta optimization targets to heuristically select losses, etc without any meta-optimization process. If not specified, the high-level meta optimization target is inferred from the task. These objectives do not need to be differentiable, as the solution provider may use proxy function to optimize model weights. Target definitions include tasks, metrics, and any weighted combination of them.
The high-level objectives described by this problem statement. These objectives provide a basis for ranking models and can be optimized by a meta optimizer (e.g. a grid search over hyperparameters). A solution provider may also directly use the meta optimization targets to heuristically select losses, etc without any meta-optimization process. If not specified, the high-level meta optimization target is inferred from the task. These objectives do not need to be differentiable, as the solution provider may use proxy function to optimize model weights. Target definitions include tasks, metrics, and any weighted combination of them.
Protobuf type
tensorflow.metadata.v0.MetaOptimizationTarget- Annotations
- @Generated()
- trait MetaOptimizationTargetOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Metric extends GeneratedFile
- Annotations
- @Generated()
- sealed final class MetricType extends Enum[MetricType] with ProtocolMessageEnum
Metric type indicates which direction of a real-valued metric is "better". For most message types, this is invariant. For custom message types, is_maximized == true is like MAXIMIZE, and otherwise MINIMIZE.
Metric type indicates which direction of a real-valued metric is "better". For most message types, this is invariant. For custom message types, is_maximized == true is like MAXIMIZE, and otherwise MINIMIZE.
Protobuf enum
tensorflow.metadata.v0.MetricType- Annotations
- @Generated()
- final class MicroAUC extends GeneratedMessage with MicroAUCOrBuilder
Area under ROC-curve calculated globally for MultiClassClassification (model predicts a single label) or MultiLabelClassification (model predicts class probabilities). The area is calculated by treating the entire set of data as an aggregate result, and computing a single metric rather than k metrics (one for each target label) that get averaged together. For example, the FPR and TPR at a given point on the AUC curve for k targer labels are: FPR = (FP1 + FP2 + ... + FPk) / ((FP1 + FP2 + ... + FPk) + (TN1 + TN2 + ... + TNk)) TPR = (TP1 + TP2 + ... +TPk) / ((TP1 + TP2 + ... + TPk) + (FN1 + FN2 + ... + FNk))
Area under ROC-curve calculated globally for MultiClassClassification (model predicts a single label) or MultiLabelClassification (model predicts class probabilities). The area is calculated by treating the entire set of data as an aggregate result, and computing a single metric rather than k metrics (one for each target label) that get averaged together. For example, the FPR and TPR at a given point on the AUC curve for k targer labels are: FPR = (FP1 + FP2 + ... + FPk) / ((FP1 + FP2 + ... + FPk) + (TN1 + TN2 + ... + TNk)) TPR = (TP1 + TP2 + ... +TPk) / ((TP1 + TP2 + ... + TPk) + (FN1 + FN2 + ... + FNk))
Protobuf type
tensorflow.metadata.v0.MicroAUC- Annotations
- @Generated()
- trait MicroAUCOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MultiClassClassification extends GeneratedMessage with MultiClassClassificationOrBuilder
Configuration for a multi-class classification task. In this problem type, there are n_classes possible label values, and the model predicts a single label. The output is one of the class labels, out of n_classes possible classes. The output type will correspond to the label column type.
Configuration for a multi-class classification task. In this problem type, there are n_classes possible label values, and the model predicts a single label. The output is one of the class labels, out of n_classes possible classes. The output type will correspond to the label column type.
Protobuf type
tensorflow.metadata.v0.MultiClassClassification- Annotations
- @Generated()
- trait MultiClassClassificationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MultiDimensionalRegression extends GeneratedMessage with MultiDimensionalRegressionOrBuilder
A multi-dimensional regression task. Similar to OneDimensionalRegression, MultiDimensionalRegression predicts continuous real numbers. However instead of predicting a single scalar value per example, we predict a fixed dimensional vector of values. By default the range is any float -inf to inf, but specific sub-types (e.g. probability) define more narrow ranges.
A multi-dimensional regression task. Similar to OneDimensionalRegression, MultiDimensionalRegression predicts continuous real numbers. However instead of predicting a single scalar value per example, we predict a fixed dimensional vector of values. By default the range is any float -inf to inf, but specific sub-types (e.g. probability) define more narrow ranges.
Protobuf type
tensorflow.metadata.v0.MultiDimensionalRegression- Annotations
- @Generated()
- trait MultiDimensionalRegressionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MultiLabelClassification extends GeneratedMessage with MultiLabelClassificationOrBuilder
Configuration for a multi-label classification task. In this problem type there are n_classes unique possible label values overall. There can be from zero up to n_classes unique labels per example. The output, which is of type real number, is class probabilities associated with each class. It will be of n_classes dimension for each example, if n_classes is specified. Otherwise, the dimension will be set to the number of unique class labels that are dynamically inferred from the data based on dynamic_class_spec.
Configuration for a multi-label classification task. In this problem type there are n_classes unique possible label values overall. There can be from zero up to n_classes unique labels per example. The output, which is of type real number, is class probabilities associated with each class. It will be of n_classes dimension for each example, if n_classes is specified. Otherwise, the dimension will be set to the number of unique class labels that are dynamically inferred from the data based on dynamic_class_spec.
Protobuf type
tensorflow.metadata.v0.MultiLabelClassification- Annotations
- @Generated()
- trait MultiLabelClassificationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class MultilabelCrossEntropy extends GeneratedMessage with MultilabelCrossEntropyOrBuilder
Cross entropy for MultiLabelClassification where each target and prediction is the probabily of belonging to that class independent of other classes.
Cross entropy for MultiLabelClassification where each target and prediction is the probabily of belonging to that class independent of other classes.
Protobuf type
tensorflow.metadata.v0.MultilabelCrossEntropy- Annotations
- @Generated()
- trait MultilabelCrossEntropyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NaturalLanguageDomain extends GeneratedMessage with NaturalLanguageDomainOrBuilder
Natural language text.
Natural language text.
Protobuf type
tensorflow.metadata.v0.NaturalLanguageDomain- Annotations
- @Generated()
- trait NaturalLanguageDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NaturalLanguageStatistics extends GeneratedMessage with NaturalLanguageStatisticsOrBuilder
Statistics for a feature containing a NL domain.
Statistics for a feature containing a NL domain.
Protobuf type
tensorflow.metadata.v0.NaturalLanguageStatistics- Annotations
- @Generated()
- trait NaturalLanguageStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NormalizedAbsoluteDifference extends GeneratedMessage with NormalizedAbsoluteDifferenceOrBuilder
Checks that the absolute count difference relative to the total count of both datasets is small. This metric is appropriate for comparing datasets that are expected to have similar absolute counts, and not necessarily just similar distributions. Computed as max_i | x_i - y_i | / sum_i(x_i + y_i) for aligned datasets x and y. Results will be in the interval [0.0, 1.0] so sensible bounds should be in the interval [0.0, 1.0).
Checks that the absolute count difference relative to the total count of both datasets is small. This metric is appropriate for comparing datasets that are expected to have similar absolute counts, and not necessarily just similar distributions. Computed as max_i | x_i - y_i | / sum_i(x_i + y_i) for aligned datasets x and y. Results will be in the interval [0.0, 1.0] so sensible bounds should be in the interval [0.0, 1.0).
Protobuf type
tensorflow.metadata.v0.NormalizedAbsoluteDifference- Annotations
- @Generated()
- trait NormalizedAbsoluteDifferenceOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NumericCrossStatistics extends GeneratedMessage with NumericCrossStatisticsOrBuilder
Protobuf type
tensorflow.metadata.v0.NumericCrossStatisticsProtobuf type
tensorflow.metadata.v0.NumericCrossStatistics- Annotations
- @Generated()
- trait NumericCrossStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NumericStatistics extends GeneratedMessage with NumericStatisticsOrBuilder
Statistics for a numeric feature in a dataset.
Statistics for a numeric feature in a dataset.
Protobuf type
tensorflow.metadata.v0.NumericStatistics- Annotations
- @Generated()
- trait NumericStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class NumericValueComparator extends GeneratedMessage with NumericValueComparatorOrBuilder
Checks that the ratio of the current value to the previous value is not below the min_fraction_threshold or above the max_fraction_threshold. That is, previous value * min_fraction_threshold <= current value <= previous value * max_fraction_threshold. To specify that the value cannot change, set both min_fraction_threshold and max_fraction_threshold to 1.0.
Checks that the ratio of the current value to the previous value is not below the min_fraction_threshold or above the max_fraction_threshold. That is, previous value * min_fraction_threshold <= current value <= previous value * max_fraction_threshold. To specify that the value cannot change, set both min_fraction_threshold and max_fraction_threshold to 1.0.
Protobuf type
tensorflow.metadata.v0.NumericValueComparator- Annotations
- @Generated()
- trait NumericValueComparatorOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class OneDimensionalRegression extends GeneratedMessage with OneDimensionalRegressionOrBuilder
A one-dimensional regression task. The output is a single real number, whose range is dependent upon the objective.
A one-dimensional regression task. The output is a single real number, whose range is dependent upon the objective.
Protobuf type
tensorflow.metadata.v0.OneDimensionalRegression- Annotations
- @Generated()
- trait OneDimensionalRegressionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class OneSideRegion extends GeneratedMessage with OneSideRegionOrBuilder
Describes a chunk that applies to only one of the two artifacts.
Describes a chunk that applies to only one of the two artifacts.
Protobuf type
tensorflow.metadata.v0.OneSideRegion- Annotations
- @Generated()
- trait OneSideRegionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Path extends GeneratedMessage with PathOrBuilder
A path is a more general substitute for the name of a field or feature that can be used for flat examples as well as structured data. For example, if we had data in a protocol buffer: message Person { int age = 1; optional string gender = 2; repeated Person parent = 3; } Thus, here the path {step:["parent", "age"]} in statistics would refer to the age of a parent, and {step:["parent", "parent", "age"]} would refer to the age of a grandparent. This allows us to distinguish between the statistics of parents' ages and grandparents' ages. In general, repeated messages are to be preferred to linked lists of arbitrary length. For SequenceExample, if we have a feature list "foo", this is represented by {step:["##SEQUENCE##", "foo"]}.A path is a more general substitute for the name of a field or feature that can be used for flat examples as well as structured data. For example, if we had data in a protocol buffer: message Person { int age = 1; optional string gender = 2; repeated Person parent = 3; } Thus, here the path {step:["parent", "age"]} in statistics would refer to the age of a parent, and {step:["parent", "parent", "age"]} would refer to the age of a grandparent. This allows us to distinguish between the statistics of parents' ages and grandparents' ages. In general, repeated messages are to be preferred to linked lists of arbitrary length. For SequenceExample, if we have a feature list "foo", this is represented by {step:["##SEQUENCE##", "foo"]}.Protobuf type
tensorflow.metadata.v0.Path- Annotations
- @Generated()
- trait PathOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class PathOuterClass extends GeneratedFile
- Annotations
- @Generated()
- final class PerformanceMetric extends GeneratedMessage with PerformanceMetricOrBuilder
Performance metrics measure the quality of a model. They need not be differentiable.
Performance metrics measure the quality of a model. They need not be differentiable.
Protobuf type
tensorflow.metadata.v0.PerformanceMetric- Annotations
- @Generated()
- trait PerformanceMetricOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Poisson extends GeneratedMessage with PoissonOrBuilder
poisson(...) DEPRECATED
poisson(...) DEPRECATED
Protobuf type
tensorflow.metadata.v0.Poisson- Annotations
- @Generated()
- trait PoissonOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class PrecisionAtK extends GeneratedMessage with PrecisionAtKOrBuilder
Protobuf type
tensorflow.metadata.v0.PrecisionAtKProtobuf type
tensorflow.metadata.v0.PrecisionAtK- Annotations
- @Generated()
- trait PrecisionAtKOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class PrecisionAtRecall extends GeneratedMessage with PrecisionAtRecallOrBuilder
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/PrecisionAtRecall
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/PrecisionAtRecall
Protobuf type
tensorflow.metadata.v0.PrecisionAtRecall- Annotations
- @Generated()
- trait PrecisionAtRecallOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class PredictionMean extends GeneratedMessage with PredictionMeanOrBuilder
The mean of the prediction across the dataset.
The mean of the prediction across the dataset.
Protobuf type
tensorflow.metadata.v0.PredictionMean- Annotations
- @Generated()
- trait PredictionMeanOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class PresenceAndValencyStatistics extends GeneratedMessage with PresenceAndValencyStatisticsOrBuilder
Statistics about the presence and valency of feature values. Feature values could be nested lists. A feature in tf.Examples or other "flat" datasets has values of nest level 1 -- they are lists of primitives. A nest level N (N > 1) feature value is a list of lists of nest level (N - 1). This proto can be used to describe the presence and valency of values at each level.
Statistics about the presence and valency of feature values. Feature values could be nested lists. A feature in tf.Examples or other "flat" datasets has values of nest level 1 -- they are lists of primitives. A nest level N (N > 1) feature value is a list of lists of nest level (N - 1). This proto can be used to describe the presence and valency of values at each level.
Protobuf type
tensorflow.metadata.v0.PresenceAndValencyStatistics- Annotations
- @Generated()
- trait PresenceAndValencyStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ProblemStatement extends GeneratedMessage with ProblemStatementOrBuilder
Protobuf type
tensorflow.metadata.v0.ProblemStatementProtobuf type
tensorflow.metadata.v0.ProblemStatement- Annotations
- @Generated()
- trait ProblemStatementOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ProblemStatementOuterClass extends GeneratedFile
- Annotations
- @Generated()
- final class RankHistogram extends GeneratedMessage with RankHistogramOrBuilder
The data used to create a rank histogram of a non-numeric feature of a dataset. The rank of a value in a feature can be used as a measure of how commonly the value is found in the entire dataset. With bucket sizes of one, this becomes a distribution function of all feature values.
The data used to create a rank histogram of a non-numeric feature of a dataset. The rank of a value in a feature can be used as a measure of how commonly the value is found in the entire dataset. With bucket sizes of one, this becomes a distribution function of all feature values.
Protobuf type
tensorflow.metadata.v0.RankHistogram- Annotations
- @Generated()
- trait RankHistogramOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class RecallAtPrecision extends GeneratedMessage with RecallAtPrecisionOrBuilder
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RecallAtPrecision
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RecallAtPrecision
Protobuf type
tensorflow.metadata.v0.RecallAtPrecision- Annotations
- @Generated()
- trait RecallAtPrecisionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ReduceOp extends GeneratedMessage with ReduceOpOrBuilder
Protobuf type
tensorflow.metadata.v0.ReduceOpProtobuf type
tensorflow.metadata.v0.ReduceOp- Annotations
- @Generated()
- trait ReduceOpOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Schema extends GeneratedMessage with SchemaOrBuilder
Message to represent schema information. NextID: 15
Message to represent schema information. NextID: 15
Protobuf type
tensorflow.metadata.v0.Schema- Annotations
- @Generated()
- trait SchemaOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SchemaOuterClass extends GeneratedFile
- Annotations
- @Generated()
- final class SensitivityAtSpecificity extends GeneratedMessage with SensitivityAtSpecificityOrBuilder
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity
Protobuf type
tensorflow.metadata.v0.SensitivityAtSpecificity- Annotations
- @Generated()
- trait SensitivityAtSpecificityOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SequenceLengthConstraints extends GeneratedMessage with SequenceLengthConstraintsOrBuilder
Encodes constraints on sequence lengths.
Encodes constraints on sequence lengths.
Protobuf type
tensorflow.metadata.v0.SequenceLengthConstraints- Annotations
- @Generated()
- trait SequenceLengthConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SequenceMetadata extends GeneratedMessage with SequenceMetadataOrBuilder
Protobuf type
tensorflow.metadata.v0.SequenceMetadataProtobuf type
tensorflow.metadata.v0.SequenceMetadata- Annotations
- @Generated()
- trait SequenceMetadataOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SequenceValueConstraints extends GeneratedMessage with SequenceValueConstraintsOrBuilder
Encodes constraints on specific values in sequences.
Encodes constraints on specific values in sequences.
Protobuf type
tensorflow.metadata.v0.SequenceValueConstraints- Annotations
- @Generated()
- trait SequenceValueConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SliceSql extends GeneratedMessage with SliceSqlOrBuilder
Protobuf type
tensorflow.metadata.v0.SliceSqlProtobuf type
tensorflow.metadata.v0.SliceSql- Annotations
- @Generated()
- trait SliceSqlOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- sealed final class SliceValueTypes extends Enum[SliceValueTypes] with ProtocolMessageEnum
Protobuf enum
tensorflow.metadata.v0.SliceValueTypesProtobuf enum
tensorflow.metadata.v0.SliceValueTypes- Annotations
- @Generated()
- final class SparseFeature extends GeneratedMessage with SparseFeatureOrBuilder
A sparse feature represents a sparse tensor that is encoded with a combination of raw features, namely index features and a value feature. Each index feature defines a list of indices in a different dimension.
A sparse feature represents a sparse tensor that is encoded with a combination of raw features, namely index features and a value feature. Each index feature defines a list of indices in a different dimension.
Protobuf type
tensorflow.metadata.v0.SparseFeature- Annotations
- @Generated()
- trait SparseFeatureOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SparseTopKCategoricalAccuracy extends GeneratedMessage with SparseTopKCategoricalAccuracyOrBuilder
sparse_top_k_categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_top_k_categorical_accuracy DEPRECATED
sparse_top_k_categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_top_k_categorical_accuracy DEPRECATED
Protobuf type
tensorflow.metadata.v0.SparseTopKCategoricalAccuracy- Annotations
- @Generated()
- trait SparseTopKCategoricalAccuracyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SpecificityAtSensitivity extends GeneratedMessage with SpecificityAtSensitivityOrBuilder
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SpecificityAtSensitivity
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SpecificityAtSensitivity
Protobuf type
tensorflow.metadata.v0.SpecificityAtSensitivity- Annotations
- @Generated()
- trait SpecificityAtSensitivityOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class SquaredHinge extends GeneratedMessage with SquaredHingeOrBuilder
squared_hinge(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/squared_hinge DEPRECATED
squared_hinge(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/squared_hinge DEPRECATED
Protobuf type
tensorflow.metadata.v0.SquaredHinge- Annotations
- @Generated()
- trait SquaredHingeOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Statistics extends GeneratedFile
- Annotations
- @Generated()
- final class StringDomain extends GeneratedMessage with StringDomainOrBuilder
Encodes information for domains of string values.
Encodes information for domains of string values.
Protobuf type
tensorflow.metadata.v0.StringDomain- Annotations
- @Generated()
- trait StringDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class StringStatistics extends GeneratedMessage with StringStatisticsOrBuilder
Statistics for a string feature in a dataset.
Statistics for a string feature in a dataset.
Protobuf type
tensorflow.metadata.v0.StringStatistics- Annotations
- @Generated()
- trait StringStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class StructDomain extends GeneratedMessage with StructDomainOrBuilder
Domain for a recursive struct. NOTE: If a feature with a StructDomain is deprecated, then all the child features (features and sparse_features of the StructDomain) are also considered to be deprecated. Similarly child features can only be in environments of the parent feature.
Domain for a recursive struct. NOTE: If a feature with a StructDomain is deprecated, then all the child features (features and sparse_features of the StructDomain) are also considered to be deprecated. Similarly child features can only be in environments of the parent feature.
Protobuf type
tensorflow.metadata.v0.StructDomain- Annotations
- @Generated()
- trait StructDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class StructStatistics extends GeneratedMessage with StructStatisticsOrBuilder
Protobuf type
tensorflow.metadata.v0.StructStatisticsProtobuf type
tensorflow.metadata.v0.StructStatistics- Annotations
- @Generated()
- trait StructStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Task extends GeneratedMessage with TaskOrBuilder
Describes a single task in a model and all its properties. A task corresponds to a single output of the model. Multiple tasks in the same problem statement correspond to different outputs of the model.
Describes a single task in a model and all its properties. A task corresponds to a single output of the model. Multiple tasks in the same problem statement correspond to different outputs of the model.
Protobuf type
tensorflow.metadata.v0.Task- Annotations
- @Generated()
- trait TaskOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- sealed final class TaskType extends Enum[TaskType] with ProtocolMessageEnum
Protobuf enum
tensorflow.metadata.v0.TaskTypeProtobuf enum
tensorflow.metadata.v0.TaskType- Annotations
- @Generated()
- final class TensorRepresentation extends GeneratedMessage with TensorRepresentationOrBuilder
A TensorRepresentation captures the intent for converting columns in a dataset to TensorFlow Tensors (or more generally, tf.CompositeTensors). Note that one tf.CompositeTensor may consist of data from multiple columns, for example, a N-dimensional tf.SparseTensor may need N + 1 columns to provide the sparse indices and values. Note that the "column name" that a TensorRepresentation needs is a string, not a Path -- it means that the column name identifies a top-level Feature in the schema (i.e. you cannot specify a Feature nested in a STRUCT Feature).
A TensorRepresentation captures the intent for converting columns in a dataset to TensorFlow Tensors (or more generally, tf.CompositeTensors). Note that one tf.CompositeTensor may consist of data from multiple columns, for example, a N-dimensional tf.SparseTensor may need N + 1 columns to provide the sparse indices and values. Note that the "column name" that a TensorRepresentation needs is a string, not a Path -- it means that the column name identifies a top-level Feature in the schema (i.e. you cannot specify a Feature nested in a STRUCT Feature).
Protobuf type
tensorflow.metadata.v0.TensorRepresentation- Annotations
- @Generated()
- final class TensorRepresentationGroup extends GeneratedMessage with TensorRepresentationGroupOrBuilder
A TensorRepresentationGroup is a collection of TensorRepresentations with names. These names may serve as identifiers when converting the dataset to a collection of Tensors or tf.CompositeTensors. For example, given the following group: { key: "dense_tensor" tensor_representation { dense_tensor { column_name: "univalent_feature" shape { dim { size: 1 } } default_value { float_value: 0 } } } } { key: "varlen_sparse_tensor" tensor_representation { varlen_sparse_tensor { column_name: "multivalent_feature" } } } Then the schema is expected to have feature "univalent_feature" and "multivalent_feature", and when a batch of data is converted to Tensors using this TensorRepresentationGroup, the result may be the following dict: { "dense_tensor": tf.Tensor(...), "varlen_sparse_tensor": tf.SparseTensor(...), }A TensorRepresentationGroup is a collection of TensorRepresentations with names. These names may serve as identifiers when converting the dataset to a collection of Tensors or tf.CompositeTensors. For example, given the following group: { key: "dense_tensor" tensor_representation { dense_tensor { column_name: "univalent_feature" shape { dim { size: 1 } } default_value { float_value: 0 } } } } { key: "varlen_sparse_tensor" tensor_representation { varlen_sparse_tensor { column_name: "multivalent_feature" } } } Then the schema is expected to have feature "univalent_feature" and "multivalent_feature", and when a batch of data is converted to Tensors using this TensorRepresentationGroup, the result may be the following dict: { "dense_tensor": tf.Tensor(...), "varlen_sparse_tensor": tf.SparseTensor(...), }Protobuf type
tensorflow.metadata.v0.TensorRepresentationGroup- Annotations
- @Generated()
- trait TensorRepresentationGroupOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- trait TensorRepresentationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class TextGeneration extends GeneratedMessage with TextGenerationOrBuilder
Configuration for a text generation task where the model should predict a sequence of natural language text.
Configuration for a text generation task where the model should predict a sequence of natural language text.
Protobuf type
tensorflow.metadata.v0.TextGeneration- Annotations
- @Generated()
- trait TextGenerationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class TimeDomain extends GeneratedMessage with TimeDomainOrBuilder
Time or date representation.
Time or date representation.
Protobuf type
tensorflow.metadata.v0.TimeDomain- Annotations
- @Generated()
- trait TimeDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class TimeOfDayDomain extends GeneratedMessage with TimeOfDayDomainOrBuilder
Time of day, without a particular date.
Time of day, without a particular date.
Protobuf type
tensorflow.metadata.v0.TimeOfDayDomain- Annotations
- @Generated()
- trait TimeOfDayDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class TopKCategoricalAccuracy extends GeneratedMessage with TopKCategoricalAccuracyOrBuilder
top_k_categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
top_k_categorical_accuracy(...) https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
Protobuf type
tensorflow.metadata.v0.TopKCategoricalAccuracy- Annotations
- @Generated()
- trait TopKCategoricalAccuracyOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class TopKClassification extends GeneratedMessage with TopKClassificationOrBuilder
Configuration for a top-K classification task. In this problem type, there are n_classes possible label values, and the model predicts n_predicted_labels labels. The output is a sequence of n_predicted_labels labels, out of n_classes possible classes. The order of the predicted output labels is determined by the predictions_order field. (*) MultiClassClassification is the same as TopKClassification with n_predicted_labels = 1. (*) TopKClassification does NOT mean multi-class multi-label classification: e.g., the output contains a sequence of labels, all coming from the same label column in the data.
Configuration for a top-K classification task. In this problem type, there are n_classes possible label values, and the model predicts n_predicted_labels labels. The output is a sequence of n_predicted_labels labels, out of n_classes possible classes. The order of the predicted output labels is determined by the predictions_order field. (*) MultiClassClassification is the same as TopKClassification with n_predicted_labels = 1. (*) TopKClassification does NOT mean multi-class multi-label classification: e.g., the output contains a sequence of labels, all coming from the same label column in the data.
Protobuf type
tensorflow.metadata.v0.TopKClassification- Annotations
- @Generated()
- trait TopKClassificationOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class Type extends GeneratedMessage with TypeOrBuilder
The type of a head or meta-objective. Specifies the label, weight, and output type of the head. TODO(martinz): add logistic regression.
The type of a head or meta-objective. Specifies the label, weight, and output type of the head. TODO(martinz): add logistic regression.
Protobuf type
tensorflow.metadata.v0.Type- Annotations
- @Generated()
- trait TypeOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class URLDomain extends GeneratedMessage with URLDomainOrBuilder
A URL, see: https://en.wikipedia.org/wiki/URL
A URL, see: https://en.wikipedia.org/wiki/URL
Protobuf type
tensorflow.metadata.v0.URLDomain- Annotations
- @Generated()
- trait URLDomainOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class UnchangedRegion extends GeneratedMessage with UnchangedRegionOrBuilder
Describes a chunk that is the same in the two artifacts.
Describes a chunk that is the same in the two artifacts.
Protobuf type
tensorflow.metadata.v0.UnchangedRegion- Annotations
- @Generated()
- trait UnchangedRegionOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class UniqueConstraints extends GeneratedMessage with UniqueConstraintsOrBuilder
Checks that the number of unique values is greater than or equal to the min, and less than or equal to the max.
Checks that the number of unique values is greater than or equal to the min, and less than or equal to the max.
Protobuf type
tensorflow.metadata.v0.UniqueConstraints- Annotations
- @Generated()
- trait UniqueConstraintsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class ValueCount extends GeneratedMessage with ValueCountOrBuilder
Limits on maximum and minimum number of values in a single example (when the feature is present). Use this when the minimum value count can be different than the maximum value count. Otherwise prefer FixedShape.
Limits on maximum and minimum number of values in a single example (when the feature is present). Use this when the minimum value count can be different than the maximum value count. Otherwise prefer FixedShape.
Protobuf type
tensorflow.metadata.v0.ValueCount- Annotations
- @Generated()
- final class ValueCountList extends GeneratedMessage with ValueCountListOrBuilder
Protobuf type
tensorflow.metadata.v0.ValueCountListProtobuf type
tensorflow.metadata.v0.ValueCountList- Annotations
- @Generated()
- trait ValueCountListOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- trait ValueCountOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class WeightedCommonStatistics extends GeneratedMessage with WeightedCommonStatisticsOrBuilder
Common weighted statistics for all feature types. Statistics counting number of values (i.e., avg_num_values and tot_num_values) include NaNs. If the weighted column is missing, then this counts as a weight of 1 for that example. For nested features with N nested levels (N > 1), the statistics counting number of values will rely on the innermost level.
Common weighted statistics for all feature types. Statistics counting number of values (i.e., avg_num_values and tot_num_values) include NaNs. If the weighted column is missing, then this counts as a weight of 1 for that example. For nested features with N nested levels (N > 1), the statistics counting number of values will rely on the innermost level.
Protobuf type
tensorflow.metadata.v0.WeightedCommonStatistics- Annotations
- @Generated()
- trait WeightedCommonStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class WeightedFeature extends GeneratedMessage with WeightedFeatureOrBuilder
Represents a weighted feature that is encoded as a combination of raw base features. The `weight_feature` should be a float feature with identical shape as the `feature`. This is useful for representing weights associated with categorical tokens (e.g. a TFIDF weight associated with each token). TODO(b/142122960): Handle WeightedCategorical end to end in TFX (validation, TFX Unit Testing, etc)
Represents a weighted feature that is encoded as a combination of raw base features. The `weight_feature` should be a float feature with identical shape as the `feature`. This is useful for representing weights associated with categorical tokens (e.g. a TFIDF weight associated with each token). TODO(b/142122960): Handle WeightedCategorical end to end in TFX (validation, TFX Unit Testing, etc)
Protobuf type
tensorflow.metadata.v0.WeightedFeature- Annotations
- @Generated()
- trait WeightedFeatureOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class WeightedNaturalLanguageStatistics extends GeneratedMessage with WeightedNaturalLanguageStatisticsOrBuilder
Statistics for a weighted feature with an NL domain.
Statistics for a weighted feature with an NL domain.
Protobuf type
tensorflow.metadata.v0.WeightedNaturalLanguageStatistics- Annotations
- @Generated()
- trait WeightedNaturalLanguageStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class WeightedNumericStatistics extends GeneratedMessage with WeightedNumericStatisticsOrBuilder
Statistics for a weighted numeric feature in a dataset.
Statistics for a weighted numeric feature in a dataset.
Protobuf type
tensorflow.metadata.v0.WeightedNumericStatistics- Annotations
- @Generated()
- trait WeightedNumericStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()
- final class WeightedStringStatistics extends GeneratedMessage with WeightedStringStatisticsOrBuilder
Statistics for a weighted string feature in a dataset.
Statistics for a weighted string feature in a dataset.
Protobuf type
tensorflow.metadata.v0.WeightedStringStatistics- Annotations
- @Generated()
- trait WeightedStringStatisticsOrBuilder extends MessageOrBuilder
- Annotations
- @Generated()