final class OneDimensionalRegression extends GeneratedMessageV3 with OneDimensionalRegressionOrBuilder
A one-dimensional regression task. The output is a single real number, whose range is dependent upon the objective.
Protobuf type tensorflow.metadata.v0.OneDimensionalRegression
- Alphabetic
- By Inheritance
- OneDimensionalRegression
- OneDimensionalRegressionOrBuilder
- GeneratedMessageV3
- Serializable
- AbstractMessage
- Message
- MessageOrBuilder
- AbstractMessageLite
- MessageLite
- MessageLiteOrBuilder
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- def equals(obj: AnyRef): Boolean
- Definition Classes
- OneDimensionalRegression → AbstractMessage → Message → AnyRef → Any
- Annotations
- @Override()
- def findInitializationErrors(): List[String]
- Definition Classes
- AbstractMessage → MessageOrBuilder
- def getAllFields(): Map[FieldDescriptor, AnyRef]
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getCounts(): Counts
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
.tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
- returns
The counts.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getCountsOrBuilder(): CountsOrBuilder
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
.tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getDefaultInstanceForType(): OneDimensionalRegression
- Definition Classes
- OneDimensionalRegression → MessageOrBuilder → MessageLiteOrBuilder
- Annotations
- @Override()
- def getDescriptorForType(): Descriptor
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getField(field: FieldDescriptor): AnyRef
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getInitializationErrorString(): String
- Definition Classes
- AbstractMessage → MessageOrBuilder
- def getLabel(): String
The name of the label. Assumes the label is a flat, top-level field.
The name of the label. Assumes the label is a flat, top-level field.
string label = 1;
- returns
The label.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- def getLabelBytes(): ByteString
The name of the label. Assumes the label is a flat, top-level field.
The name of the label. Assumes the label is a flat, top-level field.
string label = 1;
- returns
The bytes for label.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- def getLabelIdCase(): LabelIdCase
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- def getLabelPath(): Path
A path can be used instead of a flat string if the label is nested.
A path can be used instead of a flat string if the label is nested.
.tensorflow.metadata.v0.Path label_path = 3;
- returns
The labelPath.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getLabelPathOrBuilder(): PathOrBuilder
A path can be used instead of a flat string if the label is nested.
A path can be used instead of a flat string if the label is nested.
.tensorflow.metadata.v0.Path label_path = 3;
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getLabelTypeCase(): LabelTypeCase
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- def getOneofFieldDescriptor(oneof: OneofDescriptor): FieldDescriptor
- Definition Classes
- GeneratedMessageV3 → AbstractMessage → MessageOrBuilder
- def getParserForType(): Parser[OneDimensionalRegression]
- Definition Classes
- OneDimensionalRegression → GeneratedMessageV3 → Message → MessageLite
- Annotations
- @Override()
- def getProbability(): Probability
When set means the label is a probability in range [0..1].
When set means the label is a probability in range [0..1].
.tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
- returns
The probability.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getProbabilityOrBuilder(): ProbabilityOrBuilder
When set means the label is a probability in range [0..1].
When set means the label is a probability in range [0..1].
.tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getRepeatedField(field: FieldDescriptor, index: Int): AnyRef
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getRepeatedFieldCount(field: FieldDescriptor): Int
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getSerializedSize(): Int
- Definition Classes
- OneDimensionalRegression → GeneratedMessageV3 → AbstractMessage → MessageLite
- Annotations
- @Override()
- def getUnknownFields(): UnknownFieldSet
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def getWeight(): String
(optional) The weight column.
(optional) The weight column.
string weight = 2;
- returns
The weight.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def getWeightBytes(): ByteString
(optional) The weight column.
(optional) The weight column.
string weight = 2;
- returns
The bytes for weight.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def hasCounts(): Boolean
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
When set the label corresponds to counts from a poisson distribution. Eg: Number of googlers contributing to memegen each year.
.tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
- returns
Whether the counts field is set.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def hasField(field: FieldDescriptor): Boolean
- Definition Classes
- GeneratedMessageV3 → MessageOrBuilder
- def hasLabel(): Boolean
The name of the label. Assumes the label is a flat, top-level field.
The name of the label. Assumes the label is a flat, top-level field.
string label = 1;
- returns
Whether the label field is set.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- def hasLabelPath(): Boolean
A path can be used instead of a flat string if the label is nested.
A path can be used instead of a flat string if the label is nested.
.tensorflow.metadata.v0.Path label_path = 3;
- returns
Whether the labelPath field is set.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def hasOneof(oneof: OneofDescriptor): Boolean
- Definition Classes
- GeneratedMessageV3 → AbstractMessage → MessageOrBuilder
- def hasProbability(): Boolean
When set means the label is a probability in range [0..1].
When set means the label is a probability in range [0..1].
.tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
- returns
Whether the probability field is set.
- Definition Classes
- OneDimensionalRegression → OneDimensionalRegressionOrBuilder
- Annotations
- @Override()
- def hashCode(): Int
- Definition Classes
- OneDimensionalRegression → AbstractMessage → Message → AnyRef → Any
- Annotations
- @Override()
- final def isInitialized(): Boolean
- Definition Classes
- OneDimensionalRegression → GeneratedMessageV3 → AbstractMessage → MessageLiteOrBuilder
- Annotations
- @Override()
- def newBuilderForType(): Builder
- Definition Classes
- OneDimensionalRegression → Message → MessageLite
- Annotations
- @Override()
- def toBuilder(): Builder
- Definition Classes
- OneDimensionalRegression → Message → MessageLite
- Annotations
- @Override()
- def toByteArray(): Array[Byte]
- Definition Classes
- AbstractMessageLite → MessageLite
- def toByteString(): ByteString
- Definition Classes
- AbstractMessageLite → MessageLite
- final def toString(): String
- Definition Classes
- AbstractMessage → Message → AnyRef → Any
- def writeDelimitedTo(output: OutputStream): Unit
- Definition Classes
- AbstractMessageLite → MessageLite
- Annotations
- @throws(classOf[java.io.IOException])
- def writeTo(output: CodedOutputStream): Unit
- Definition Classes
- OneDimensionalRegression → GeneratedMessageV3 → AbstractMessage → MessageLite
- Annotations
- @Override()
- def writeTo(output: OutputStream): Unit
- Definition Classes
- AbstractMessageLite → MessageLite
- Annotations
- @throws(classOf[java.io.IOException])